Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(12p^(-10))/((-4p^(-2))^(4))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline12p10(4p2)4 \frac{12 p^{-10}}{\left(-4 p^{-2}\right)^{4}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline12p10(4p2)4 \frac{12 p^{-10}}{\left(-4 p^{-2}\right)^{4}} \newlineAnswer:
  1. Simplify denominator: Simplify the denominator.\newlineWe have the denominator as (4p2)4(-4p^{-2})^4. When raising a power to a power, we multiply the exponents. Also, the negative sign raised to an even power will become positive.\newline((4p2)4)=(4)4×(p2)4((-4p^{-2})^4) = (-4)^4 \times (p^{-2})^4\newline=256×p8= 256 \times p^{-8}
  2. Rewrite with positive exponents: Rewrite the expression with positive exponents.\newlineWe can rewrite p8p^{-8} as 1/p81/p^8 to make the exponent positive.\newline256×p8=256/p8256 \times p^{-8} = 256/p^8
  3. Divide numerator by denominator: Divide the numerator by the denominator.\newlineNow we divide the original numerator by the simplified denominator.\newline(12p10)/(256/p8)(12p^{-10}) / (256/p^8)\newline= (12p10)×(p8/256)(12p^{-10}) \times (p^8/256)
  4. Simplify expression: Simplify the expression.\newlineWe can multiply the pp terms by adding the exponents and divide the coefficients.\newline(12×p10)×(p8/256)(12 \times p^{-10}) \times (p^8/256)\newline= (12/256)×p10+8(12/256) \times p^{-10+8}\newline= (12/256)×p2(12/256) \times p^{-2}
  5. Reduce coefficient fraction: Reduce the coefficient fraction.\newlineThe fraction 12256\frac{12}{256} can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 44.\newline(12256)=364\left(\frac{12}{256}\right) = \frac{3}{64}
  6. Rewrite with positive exponents: Rewrite the final expression with positive exponents.\newlineWe can rewrite p2p^{-2} as 1/p21/p^2 to make the exponent positive.\newline(3/64)p2=(3/64)(1/p2)(3/64) \cdot p^{-2} = (3/64) \cdot (1/p^2)
  7. Combine coefficients and variables: Combine the coefficients and the variables.\newlineNow we combine the coefficients and the variables to express the final answer.\newline(364)×(1p2)=364p2(\frac{3}{64}) \times (\frac{1}{p^2}) = \frac{3}{64p^2}

More problems from Multiplication with rational exponents