Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

((4a^(-5)k^(-4))^(-5))/(2k^(-9))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline(4a5k4)52k9 \frac{\left(4 a^{-5} k^{-4}\right)^{-5}}{2 k^{-9}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline(4a5k4)52k9 \frac{\left(4 a^{-5} k^{-4}\right)^{-5}}{2 k^{-9}} \newlineAnswer:
  1. Write Expression, Identify Exponents: Write down the given expression and identify the negative exponents.\newlineThe given expression is ((4a5k4)52k9)\left(\frac{(4a^{-5}k^{-4})^{-5}}{2k^{-9}}\right).\newlineWe need to simplify this expression and convert all negative exponents to positive exponents.
  2. Apply Negative Exponent Rule: Apply the negative exponent rule, which states that an=1ana^{-n} = \frac{1}{a^n}, to the numerator.\newline((4a5k4)5)((4a^{-5}k^{-4})^{-5}) becomes (14a5k4)5(\frac{1}{4a^5k^4})^5.
  3. Apply Power Rule: Apply the power rule, which states that (a/b)n=an/bn(a/b)^n = a^n/b^n, to the numerator.(1/(4a5k4))5(1/(4a^5k^4))^5 becomes 15/(45a(55)k(45))1^5/(4^5a^{(5*5)}k^{(4*5)}).
  4. Simplify Numerator: Simplify the numerator using the power of 11 and the power rule for exponents.\newline15/(45a55k45)1^5/(4^5a^{5*5}k^{4*5}) becomes 1/(1024a25k20)1/(1024a^{25}k^{20}).
  5. Apply Negative Exponent Rule to Denominator: Apply the negative exponent rule to the denominator, which states that kn=1knk^{-n} = \frac{1}{k^n}. 2k92k^{-9} becomes 21×1k9\frac{2}{1} \times \frac{1}{k^9}, which simplifies to 2k9\frac{2}{k^9}.
  6. Combine into Single Fraction: Combine the numerator and the denominator into a single fraction. \newline(11024a25k20)/(2k9)(\frac{1}{1024a^{25}k^{20}}) / (\frac{2}{k^{9}}) becomes (11024a25k20)(k92)(\frac{1}{1024a^{25}k^{20}}) \cdot (\frac{k^{9}}{2}).
  7. Multiply Fractions: Multiply the fractions.\newline(11024a25k20)×(k92)(\frac{1}{1024a^{25}k^{20}}) \times (\frac{k^{9}}{2}) becomes k92048a25k20\frac{k^{9}}{2048a^{25}k^{20}}.
  8. Simplify Fraction: Simplify the fraction by canceling out the common kk terms.k92048a25k20\frac{k^9}{2048a^{25}k^{20}} becomes 12048a25k(209)\frac{1}{2048a^{25}k^{(20-9)}}, which simplifies to 12048a25k11\frac{1}{2048a^{25}k^{11}}.

More problems from Multiplication with rational exponents