Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(15u^(10)q^(-6))/((-3u^(4)q^(3))^(3))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline15u10q6(3u4q3)3 \frac{15 u^{10} q^{-6}}{\left(-3 u^{4} q^{3}\right)^{3}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline15u10q6(3u4q3)3 \frac{15 u^{10} q^{-6}}{\left(-3 u^{4} q^{3}\right)^{3}} \newlineAnswer:
  1. Simplify Denominator: Simplify the denominator.\newlineWe have a negative base raised to an exponent: (3u4q3)3(-3u^{4}q^{3})^{3}. When raising a negative base to an odd exponent, the result is negative. We will also distribute the exponent of 33 to each factor inside the parentheses.\newline(3u4q3)3=33×u4×3×q3×3(-3u^{4}q^{3})^{3} = -3^{3} \times u^{4\times3} \times q^{3\times3}\newline=27×u12×q9= -27 \times u^{12} \times q^{9}
  2. Rewrite Fraction: Rewrite the original fraction with the simplified denominator.\newlineNow we have the fraction as:\newline(15u10q627u12q9)(\frac{15u^{10}q^{-6}}{-27u^{12}q^{9}})
  3. Simplify Fraction: Simplify the fraction by dividing the coefficients and subtracting the exponents of like bases.\newlineWe divide the coefficients 1515 and 27-27 and subtract the exponents of uu and qq.\newlineFor the coefficients: 1527=59\frac{15}{-27} = -\frac{5}{9}\newlineFor uu: u10/u12=u1012=u2u^{10} / u^{12} = u^{10-12} = u^{-2}\newlineFor qq: q6/q9=q69=q15q^{-6} / q^{9} = q^{-6-9} = q^{-15}\newlineThe fraction simplifies to:\newline(59)u2q15(-\frac{5}{9}) \cdot u^{-2} \cdot q^{-15}
  4. Express with Positive Exponents: Express the fraction using only positive exponents.\newlineTo express u2u^{-2} and q15q^{-15} with positive exponents, we take the reciprocal of each.\newlineu2=1u2u^{-2} = \frac{1}{u^{2}}\newlineq15=1q15q^{-15} = \frac{1}{q^{15}}\newlineThe fraction becomes:\newline(59)(1u2)(1q15)\left(-\frac{5}{9}\right) \cdot \left(\frac{1}{u^{2}}\right) \cdot \left(\frac{1}{q^{15}}\right)
  5. Combine Terms: Combine the terms to get the final answer.\newlineThe final simplified form of the fraction is:\newline59u2q15-\frac{5}{9u^{2}q^{15}}

More problems from Multiplication with rational exponents