Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(4(d^(-4)q^(-1))^(2))/(4d^(10)q^(-2))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline4(d4q1)24d10q2 \frac{4\left(d^{-4} q^{-1}\right)^{2}}{4 d^{10} q^{-2}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline4(d4q1)24d10q2 \frac{4\left(d^{-4} q^{-1}\right)^{2}}{4 d^{10} q^{-2}} \newlineAnswer:
  1. Write & Identify: Write down the given expression and identify the negative exponents.\newlineThe given expression is (4(d4q1))2/(4d10q2)(4(d^{-4}q^{-1}))^{2}/(4d^{10}q^{-2}).\newlineWe need to simplify this expression and express it with only positive exponents.
  2. Apply Power Rule: Apply the power to a product rule to the numerator.\newlineAccording to the power to a product rule, (ab)n=an×bn(ab)^n = a^n \times b^n.\newlineSo, (4(d4q1))2(4(d^{-4}q^{-1}))^{2} becomes 42×(d4)2×(q1)24^2 \times (d^{-4})^2 \times (q^{-1})^2.
  3. Simplify Numerator: Simplify the numerator using the power of a power rule.\newlineAccording to the power of a power rule, (am)n=a(mn)(a^m)^n = a^{(m*n)}.\newlineSo, 42×(d4)2×(q1)24^2 \times (d^{-4})^2 \times (q^{-1})^2 becomes 16×d8×q216 \times d^{-8} \times q^{-2}.
  4. Rewrite with Pos Exponents: Rewrite the expression with positive exponents.\newlineTo convert negative exponents to positive, we use the rule an=1ana^{-n} = \frac{1}{a^n}.\newlineSo, d8d^{-8} becomes 1d8\frac{1}{d^8} and q2q^{-2} becomes 1q2\frac{1}{q^2}.\newlineThe numerator is now 16d8q2\frac{16}{d^8 \cdot q^2}.
  5. Simplify Denominator: Simplify the denominator.\newlineThe denominator is 4d10q24d^{10}q^{-2}.\newlineWe already know that q2q^{-2} is 1/q21/q^2, so the denominator becomes 4d10/q24d^{10}/q^2.
  6. Combine Numerator & Denominator: Combine the numerator and denominator.\newlineNow we have (16d8q2)/(4d10q2)(\frac{16}{d^8 \cdot q^2}) / (\frac{4d^{10}}{q^2}).\newlineWe can simplify this by multiplying by the reciprocal of the denominator.
  7. Multiply by Reciprocal: Multiply by the reciprocal of the denominator.\newlineMultiplying by the reciprocal, we get (16d8q2)(q24d10)(\frac{16}{d^8 \cdot q^2}) \cdot (\frac{q^2}{4d^{10}}).
  8. Cancel Common Factors: Cancel out common factors. The q2q^2 terms cancel out, and we can simplify 16/416/4 to 44. Now we have 4/(d8d10)4/(d^8 * d^{10}).
  9. Combine D Terms: Combine the d terms using the rule am/an=amna^m/a^n = a^{m-n}. So, 4/(d8d10)4/(d^8 \cdot d^{10}) becomes 4/d8+104/d^{8+10} which simplifies to 4/d184/d^{18}.

More problems from Multiplication with rational exponents