Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(-5p^(-5))/((3p^(2))^(5))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline5p5(3p2)5 \frac{-5 p^{-5}}{\left(3 p^{2}\right)^{5}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline5p5(3p2)5 \frac{-5 p^{-5}}{\left(3 p^{2}\right)^{5}} \newlineAnswer:
  1. Write Expression: Write down the given expression.\newlineWe have the expression (5p5)/((3p2)5)(-5p^{-5})/((3p^{2})^{5}).
  2. Simplify Denominator: Simplify the denominator.\newlineThe denominator is (3p2)5(3p^{2})^{5}. According to the power of a power rule, we multiply the exponents.\newline(3p2)5=35×(p2)5=35×p2×5=35×p10(3p^{2})^{5} = 3^{5} \times (p^{2})^{5} = 3^{5} \times p^{2\times5} = 3^{5} \times p^{10}.
  3. Rewrite Expression: Rewrite the expression with the simplified denominator.\newlineNow the expression is (5p5)/(35p10)(-5p^{-5})/(3^5 \cdot p^{10}).
  4. Deal with Negative Exponent: Simplify the expression by dealing with the negative exponent in the numerator. A negative exponent means that the base is on the wrong side of the fraction line, so we move it to the denominator to make the exponent positive. 535p10p5\frac{-5}{3^5 \cdot p^{10}} \cdot p^5.
  5. Calculate Value: Calculate the value of 353^5. \newline35=3×3×3×3×3=2433^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243.
  6. Combine Terms: Combine the terms in the denominator.\newlineNow we have (5)/(243p10)p5(-5)/(243 \cdot p^{10}) \cdot p^{5}.
  7. Combine pp Terms: Simplify the expression by combining the pp terms.\newlineWe subtract the exponents of pp because we are dividing powers with the same base.\newline(5)/(243p105)=(5)/(243p5)(-5)/(243 \cdot p^{10-5}) = (-5)/(243 \cdot p^5).
  8. Write Final Expression: Write the final simplified expression.\newlineThe final simplified expression is (5)/(243p5)(-5)/(243 \cdot p^5).

More problems from Multiplication with rational exponents