Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(3c^(5)t^(-5))/((-4t^(5))^(4))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline3c5t5(4t5)4 \frac{3 c^{5} t^{-5}}{\left(-4 t^{5}\right)^{4}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline3c5t5(4t5)4 \frac{3 c^{5} t^{-5}}{\left(-4 t^{5}\right)^{4}} \newlineAnswer:
  1. Identify Given Expression: Write down the given expression and identify negative exponents.\newlineThe given expression is (3c5t5)/((4t5)4)(3c^{5}t^{-5})/((-4t^{5})^{4}).\newlineWe can see that t5t^{-5} is a negative exponent.
  2. Apply Negative Exponent Rule: Apply the negative exponent rule to move t5t^{-5} to the denominator.\newlineAccording to the negative exponent rule, an=1ana^{-n} = \frac{1}{a^n}. We apply this to t5t^{-5}.\newline(3c5t5)/((4t5)4)(3c^{5}t^{-5})/((-4t^{5})^{4}) becomes (3c5)/(t5(4t5)4)(3c^{5})/(t^{5}(-4t^{5})^4).
  3. Simplify Denominator: Simplify the denominator.\newlineWe need to simplify (4t5)4(-4t^{5})^4. When raising a power to a power, we multiply the exponents, and when raising a product to a power, we raise each factor to the power.\newline(4t5)4=(4)4×(t5)4=256×t20(-4t^{5})^4 = (-4)^4 \times (t^{5})^4 = 256 \times t^{20}.
  4. Substitute Simplified Denominator: Substitute the simplified denominator back into the expression.\newlineNow we have (3c5)/(t5256t20)(3c^{5})/(t^{5} \cdot 256 \cdot t^{20}).
  5. Combine T Terms: Combine the tt terms in the denominator.\newlineSince t5×t20=t5+20=t25t^{5} \times t^{20} = t^{5+20} = t^{25}, we can combine them.\newlineThe expression now is (3c5)/(256×t25)(3c^{5})/(256 \times t^{25}).
  6. Simplify Fraction: Simplify the fraction by canceling out any common factors if possible.\newlineThere are no common factors between the numerator and the denominator, so the expression is already in its simplest form.\newlineThe final answer is (3c5)/(256×t25)(3c^{5})/(256 \times t^{25}).

More problems from Multiplication with rational exponents