Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

((5m^(5)r^(-3))^(-2))/(2r^(9))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline(5m5r3)22r9 \frac{\left(5 m^{5} r^{-3}\right)^{-2}}{2 r^{9}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline(5m5r3)22r9 \frac{\left(5 m^{5} r^{-3}\right)^{-2}}{2 r^{9}} \newlineAnswer:
  1. Apply Negative Exponent Rule: Write down the given expression and apply the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to simplify the expression.\newlineGiven expression: ((5m5r3)2)/(2r9)\left(\left(5m^{5}r^{-3}\right)^{-2}\right)/\left(2r^{9}\right)\newlineApply the negative exponent rule to the numerator:\newline=(1(5m5r3)2)/(2r9)= \left(\frac{1}{\left(5m^{5}r^{-3}\right)^{2}}\right)/\left(2r^{9}\right)
  2. Simplify Numerator with Power of a Power Rule: Simplify the numerator by applying the power of a power rule.\newlineThe power of a power rule states that (an)m=anm(a^n)^m = a^{n*m}. We will apply this rule to the numerator.\newline=1((52)(m52)(r32))/(2r9)= \frac{1}{((5^2)(m^{5*2})(r^{-3*2}))}/(2r^{9})\newline=1(25m10r6)/(2r9)= \frac{1}{(25m^{10}r^{-6})}/(2r^{9})
  3. Simplify Denominator by Multiplying Exponents: Simplify the denominator by multiplying the exponents.\newlineSince we have a single term r9r^{9} in the denominator, we can combine it with the numerator.\newline= 125m10r6×2r9\frac{1}{25m^{10}r^{-6} \times 2r^{9}}\newline= 150m10r(6+9)\frac{1}{50m^{10}r^{(-6+9)}}\newline= 150m10r3\frac{1}{50m^{10}r^{3}}
  4. Rewrite Expression with Positive Exponents: Rewrite the expression with only positive exponents.\newlineWe already have only positive exponents in the expression, so no further simplification is needed in terms of exponents.\newlineFinal expression: 150m10r3\frac{1}{50m^{10}r^{3}}

More problems from Multiplication with rational exponents