Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

((4x^(-5)k^(3))^(-5))/(12x^(-6)k^(-8))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline(4x5k3)512x6k8 \frac{\left(4 x^{-5} k^{3}\right)^{-5}}{12 x^{-6} k^{-8}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline(4x5k3)512x6k8 \frac{\left(4 x^{-5} k^{3}\right)^{-5}}{12 x^{-6} k^{-8}} \newlineAnswer:
  1. Write Expression, Identify Exponents: Write down the given expression and identify the negative exponents.\newlineThe given expression is (4x5k3)512x6k8\frac{(4x^{-5}k^{3})^{-5}}{12x^{-6}k^{-8}}.\newlineWe need to simplify this expression and express it with only positive exponents.
  2. Apply Negative Exponent Rule: Apply the negative exponent rule to the numerator.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire numerator.\newline((4x5k3)5)((4x^{-5}k^{3})^{-5}) becomes (1(4x5k3)5)(\frac{1}{(4x^{-5}k^{3})^5}).
  3. Simplify Denominator: Simplify the denominator by applying the negative exponent rule.\newlineThe negative exponent rule will also be applied to each term in the denominator.\newline12x(6)k(8)12x^{(-6)}k^{(-8)} becomes 12x6k8\frac{12}{x^6k^8}.
  4. Combine Numerator and Denominator: Combine the numerator and denominator.\newlineNow we have (1(4x5k3)5)/(12x6k8)(\frac{1}{(4x^{-5}k^{3})^5}) / (\frac{12}{x^6k^8}).\newlineThis can be rewritten as (145x25k15)(x6k812)(\frac{1}{4^5x^{-25}k^{15}}) * (\frac{x^6k^8}{12}).
  5. Multiply Terms: Simplify the expression by multiplying the terms. We multiply the numerators and the denominators separately. This gives us (x6k8)/(45x25k15×12)(x^6k^8)/(4^5x^{-25}k^{15} \times 12).
  6. Simplify Powers and Combine: Simplify the powers of 44 and combine like terms.\newline454^5 is 10241024. We also add the exponents of like bases.\newlineThis results in (x6(25)k815)/(1024×12)(x^{6-(-25)}k^{8-15})/(1024 \times 12).
  7. Perform Exponent Arithmetic: Perform the exponent arithmetic and simplify the fraction.\newlineAdding the exponents of xx and subtracting the exponents of kk gives us x31k7x^{31}k^{-7}.\newlineSimplify 1024×121024 \times 12 to get 1228812288.\newlineThe expression is now x31k712288\frac{x^{31}k^{-7}}{12288}.
  8. Apply Negative Exponent Rule: Apply the negative exponent rule to k7k^{-7} to make the exponent positive.\newlinek7k^{-7} becomes 1k7\frac{1}{k^7}.\newlineThe final expression is x3112288k7\frac{x^{31}}{12288k^7}.

More problems from Multiplication with rational exponents