Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

((2w^(-4))^(3))/(-3w^(-3))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline(2w4)33w3 \frac{\left(2 w^{-4}\right)^{3}}{-3 w^{-3}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline(2w4)33w3 \frac{\left(2 w^{-4}\right)^{3}}{-3 w^{-3}} \newlineAnswer:
  1. Rewrite with positive exponents: Rewrite the expression with positive exponents.\newlineWe have the expression (2w4)33w3\frac{(2w^{-4})^3}{-3w^{-3}}. To simplify, we first rewrite the negative exponents as positive by moving the terms to the opposite side of the fraction.\newline(23w43)/(3w3)(2^3 \cdot w^{-4\cdot3}) / (-3 \cdot w^{-3})\newline=(8w12)/(3w3)= (8 \cdot w^{-12}) / (-3 \cdot w^{-3})\newline=(83)(w12w3)= (\frac{8}{-3}) \cdot (\frac{w^{-12}}{w^{-3}})
  2. Simplify numerical part: Simplify the numerical part of the fraction.\newlineWe simplify the numerical part of the fraction by dividing 88 by 3-3.\newline(8/3)=8/3(8 / -3) = -8/3
  3. Apply quotient rule for exponents: Apply the quotient rule for exponents.\newlineWe simplify the variable part of the fraction using the quotient rule for exponents, which states that am/an=a(mn)a^{m}/a^{n} = a^{(m-n)} when m > n.\newlinew(12)/w(3)=w(12(3))=w(12+3)=w(9)w^{(-12)} / w^{(-3)} = w^{(-12 - (-3))} = w^{(-12 + 3)} = w^{(-9)}
  4. Rewrite with positive exponents: Rewrite the expression with positive exponents.\newlineWe have w9w^{-9}, which we can rewrite with a positive exponent by moving it to the denominator.\newlinew9=1w9w^{-9} = \frac{1}{w^9}
  5. Combine numerical and variable parts: Combine the numerical and variable parts.\newlineNow we combine the numerical part from Step 22 and the variable part from Step 44.\newline83×1w9=83w9-\frac{8}{3} \times \frac{1}{w^9} = -\frac{8}{3w^9}

More problems from Multiplication with rational exponents