Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

((-2r^(-3))^(3))/(10r^(-2))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline(2r3)310r2 \frac{\left(-2 r^{-3}\right)^{3}}{10 r^{-2}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline(2r3)310r2 \frac{\left(-2 r^{-3}\right)^{3}}{10 r^{-2}} \newlineAnswer:
  1. Rewrite with positive exponents: Rewrite the expression with positive exponents.\newlineWe have the expression ((2r3)3)/(10r2)((-2r^{-3})^3)/(10r^{-2}). To simplify, we need to convert the negative exponents to positive exponents.\newline((2r3)3)/(10r2)((-2r^{-3})^3)/(10r^{-2}) can be rewritten as ((2)3/(r3))/(10/r2)((-2)^3/(r^3))/(10/r^2).
  2. Simplify numerator: Simplify the numerator.\newlineWe will calculate (2)3(-2)^3 and simplify the numerator.\newline(2)3=2×2×2=8(-2)^3 = -2 \times -2 \times -2 = -8.\newlineSo, the expression becomes (8/r3)(10/r2)\frac{(-8/r^3)}{(10/r^2)}.
  3. Multiply by reciprocal: Multiply by the reciprocal of the denominator.\newlineTo divide by a fraction, we multiply by its reciprocal. So, we will multiply (8/r3)(-8/r^3) by the reciprocal of (10/r2)(10/r^2).\newline(8/r3)×(r2/10)=(8×r2)/(r3×10)(-8/r^3) \times (r^2/10) = (-8 \times r^2) / (r^3 \times 10).
  4. Simplify expression: Simplify the expression.\newlineNow we simplify the expression by canceling out the common rr terms and dividing the constants.\newline(8×r2)/(r3×10)=(8/10)×(r2/r3)(-8 \times r^2) / (r^3 \times 10) = (-8/10) \times (r^2/r^3).
  5. Reduce fraction and apply rule: Reduce the fraction and apply the exponent rule.\newlineWe can reduce the fraction 810-\frac{8}{10} and apply the rule am/an=amna^{m}/a^{n} = a^{m-n} for the rr terms.\newline(810)(r2/r3)=(45)r23=(45)r1(-\frac{8}{10}) \cdot (r^{2}/r^{3}) = (-\frac{4}{5}) \cdot r^{2-3} = (-\frac{4}{5}) \cdot r^{-1}.
  6. Rewrite with positive exponents: Rewrite the expression with positive exponents.\newlineWe need to express the final answer with positive exponents, so we rewrite r1r^{-1} as 1/r1/r.\newlineThe final expression is (45)(1r)(-\frac{4}{5}) \cdot (\frac{1}{r}).

More problems from Multiplication with rational exponents