Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(2(u^(-2)h^(-1))^(-1))/(6u^(-9)h^(9))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline2(u2h1)16u9h9 \frac{2\left(u^{-2} h^{-1}\right)^{-1}}{6 u^{-9} h^{9}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline2(u2h1)16u9h9 \frac{2\left(u^{-2} h^{-1}\right)^{-1}}{6 u^{-9} h^{9}} \newlineAnswer:
  1. Simplify numerator: Simplify the numerator by applying the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We apply this rule to the numerator.\newline(2(u2h1)1)=2u2h1(2(u^{-2}h^{-1})^{-1}) = \frac{2}{u^{-2}h^{-1}}
  2. Simplify denominator: Simplify the denominator by applying the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We apply this rule to the denominator.\newline6u9h9=6u9h96u^{-9}h^{9} = \frac{6}{u^{9}h^{-9}}
  3. Combine numerator and denominator: Combine the numerator and denominator.\newlineWe have 2u2h1\frac{2}{u^{-2}h^{-1}} over 6u9h9\frac{6}{u^{9}h^{-9}}, which is a complex fraction. To simplify, we multiply the numerator by the reciprocal of the denominator.\newline(2u2h1)×(u9h96)(\frac{2}{u^{-2}h^{-1}}) \times (\frac{u^{9}h^{-9}}{6})
  4. Multiply numerators and denominators: Simplify the expression by multiplying the numerators and denominators.\newline(2u9h9)/(u2h16)(2 \cdot u^{9} \cdot h^{-9}) / (u^{-2} \cdot h^{-1} \cdot 6)
  5. Apply exponent rule: Apply the exponent rule for multiplication, which states that am×an=am+na^{m} \times a^{n} = a^{m+n}. \newline2×u9+(2)×h9+(1)/6=2×u7×h10/62 \times u^{9 + (-2)} \times h^{-9 + (-1)} / 6 = 2 \times u^{7} \times h^{-10} / 6
  6. Simplify fraction: Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 22.(26)u7h10(\frac{2}{6}) \cdot u^{7} \cdot h^{-10} = (13)u7h10(\frac{1}{3}) \cdot u^{7} \cdot h^{-10}
  7. Apply negative exponent rule: Apply the negative exponent rule to h10h^{-10} to express it with a positive exponent.\newline(13)u7(1h10)(\frac{1}{3}) \cdot u^{7} \cdot (\frac{1}{h^{10}})
  8. Combine terms: Combine the terms to express the final answer. (13)u7/h10(\frac{1}{3}) \cdot u^{7} / h^{10}

More problems from Multiplication with rational exponents