Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(4h^(5))/((4h^(-4))^(-3))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline4h5(4h4)3 \frac{4 h^{5}}{\left(4 h^{-4}\right)^{-3}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline4h5(4h4)3 \frac{4 h^{5}}{\left(4 h^{-4}\right)^{-3}} \newlineAnswer:
  1. Simplify Denominator: Simplify the denominator.\newlineWe have a negative exponent in the denominator, which we can simplify by using the rule that an=1ana^{-n} = \frac{1}{a^n}.\newline(4h4)3=(14h4)3(4h^{-4})^{-3} = \left(\frac{1}{4h^4}\right)^{-3}
  2. Apply Negative Exponent: Apply the negative exponent to the denominator.\newlineUsing the rule from Step 11, we can now apply the negative exponent to the denominator.\newline(1/(4h4))3=(4h4)3(1/(4h^4))^{-3} = (4h^4)^3
  3. Expand Exponent: Expand the exponent in the denominator.\newlineWe will now expand the exponent in the denominator by multiplying the exponents.\newline(4h4)3=43×(h4)3(4h^4)^3 = 4^3 \times (h^4)^3\newline=64×h4×3= 64 \times h^{4\times3}\newline=64×h12= 64 \times h^{12}
  4. Combine Numerator and Denominator: Combine the numerator and the simplified denominator.\newlineNow we can combine the original numerator with the simplified denominator.\newline(4h5)/(64h12)(4h^5) / (64 \cdot h^{12})
  5. Simplify Fraction: Simplify the fraction by dividing the coefficients and subtracting the exponents.\newlineWe divide the coefficients 464\frac{4}{64} and subtract the exponents of hh (512)(5 - 12).\newline464h512\frac{4}{64} \cdot h^{5-12}\newline= 116h7\frac{1}{16} \cdot h^{-7}
  6. Express Negative Exponent: Express the negative exponent as a positive exponent.\newlineWe have a negative exponent in the result, which we can express as a positive exponent by taking the reciprocal.\newline(1/16)×h7=(1/16)×(1/h7)(1/16) \times h^{-7} = (1/16) \times (1/h^7)
  7. Combine Terms: Combine the terms to express the final answer.\newlineThe final answer is the product of the fraction and the reciprocal of hh to the positive exponent.\newline(116)×(1h7)=116h7(\frac{1}{16}) \times (\frac{1}{h^7}) = \frac{1}{16h^7}

More problems from Multiplication with rational exponents