Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

(-12k^(-10))/(3(k^(-5))^(4))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline12k103(k5)4 \frac{-12 k^{-10}}{3\left(k^{-5}\right)^{4}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline12k103(k5)4 \frac{-12 k^{-10}}{3\left(k^{-5}\right)^{4}} \newlineAnswer:
  1. Simplify Denominator: Simplify the denominator.\newlineWe have a power raised to a power in the denominator, which means we multiply the exponents.\newline(3(k5)4)=3×(k5×4)=3×k20(3(k^{-5})^{4}) = 3 \times (k^{-5 \times 4}) = 3 \times k^{-20}
  2. Rewrite with Positive Exponents: Rewrite the fraction with positive exponents.\newlineTo convert negative exponents to positive, we take the reciprocal of the base raised to the positive exponent.\newline(12k10)/(3k20)=(12/k10)/(3/k20)(-12k^{-10})/(3k^{-20}) = (-12/k^{10})/(3/k^{20})
  3. Divide and Subtract Exponents: Simplify the fraction by dividing the coefficients and subtracting the exponents.\newlineWhen dividing powers with the same base, we subtract the exponents.\newline(12/3)×(k2010)=4×k10(-12/3) \times (k^{20-10}) = -4 \times k^{10}
  4. Write Final Answer: Write the final answer.\newlineThe fraction is now simplified to 4k10-4k^{10} with positive exponents.

More problems from Multiplication with rational exponents