Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the following fraction in simplest form, only using positive exponents.

((3k^(3)v^(2))^(-5))/(4k^(7)v^(5))
Answer:

Express the following fraction in simplest form, only using positive exponents.\newline(3k3v2)54k7v5 \frac{\left(3 k^{3} v^{2}\right)^{-5}}{4 k^{7} v^{5}} \newlineAnswer:

Full solution

Q. Express the following fraction in simplest form, only using positive exponents.\newline(3k3v2)54k7v5 \frac{\left(3 k^{3} v^{2}\right)^{-5}}{4 k^{7} v^{5}} \newlineAnswer:
  1. Apply negative exponent rule: Apply the negative exponent rule to the numerator.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the numerator to make the exponent positive.\newline((3k3v2)5)=1((3k3v2)5)((3k^{3}v^{2})^{-5}) = \frac{1}{((3k^{3}v^{2})^{5})}
  2. Expand numerator exponent: Expand the exponent in the numerator.\newlineWhen raising a power to a power, you multiply the exponents. We will apply this to each factor in the numerator.\newline1(3k3v2)5=135(k3)5(v2)5\frac{1}{(3k^{3}v^{2})^{5}} = \frac{1}{3^{5} \cdot (k^{3})^{5} \cdot (v^{2})^{5}}
  3. Calculate powers in numerator: Calculate the powers in the numerator.\newlineNow we will calculate each of the powers separately.\newline135×(k3)5×(v2)5=1243×k15×v10\frac{1}{3^5 \times (k^{3})^5 \times (v^{2})^5} = \frac{1}{243 \times k^{15} \times v^{10}}
  4. Combine numerator and denominator: Combine the numerator and the denominator.\newlineNow we will write the entire fraction with the expanded numerator and the original denominator.\newline1243k15v10/4k7v51\frac{1}{243 \cdot k^{15} \cdot v^{10}} / \frac{4k^{7}v^{5}}{1}
  5. Simplify fraction by dividing: Simplify the fraction by dividing the numerator by the denominator.\newlineTo divide two fractions, you multiply the first fraction by the reciprocal of the second fraction.\newline1243k15v10\frac{1}{243 \cdot k^{15} \cdot v^{10}} \cdot 14k7v5\frac{1}{4k^{7}v^{5}}
  6. Multiply the fractions: Multiply the fractions.\newlineNow we will multiply the numerators and the denominators separately.\newline(1×1)/(243×k15×v10×4k7×v5)(1 \times 1) / (243 \times k^{15} \times v^{10} \times 4k^{7} \times v^{5})
  7. Combine like terms in denominator: Combine like terms in the denominator.\newlineWe will add the exponents of like bases in the denominator.\newline1(243×4×k15+7×v10+5)\frac{1}{(243 \times 4 \times k^{15+7} \times v^{10+5})}
  8. Calculate exponents and coefficients: Calculate the exponents and coefficients in the denominator.\newlineNow we will calculate the exponents and multiply the coefficients.\newline1972×k22×v15\frac{1}{972 \times k^{22} \times v^{15}}
  9. Write final answer: Write the final answer with positive exponents.\newlineThe fraction is already in simplest form with positive exponents.\newline1972k22v15\frac{1}{972 \cdot k^{22} \cdot v^{15}}

More problems from Multiplication with rational exponents