Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a function of a DIFFERENT angle, 
0^(@) <= theta < 360^(@).

sin(71^(@))

sin(◻^(@))

Express as a function of a DIFFERENT angle, 0^{\circ} \leq \theta<360^{\circ} .\newlinesin(71) \sin \left(71^{\circ}\right) \newlinesin() \sin \left(\square^{\circ}\right)

Full solution

Q. Express as a function of a DIFFERENT angle, 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlinesin(71) \sin \left(71^{\circ}\right) \newlinesin() \sin \left(\square^{\circ}\right)
  1. Identify angle: Identify the related angle to 71°71° that can be used to express sin(71°)\sin(71°) as a function of a different angle.\newlineSince the sine function is periodic with a period of 360°360°, we can find a related angle by subtracting 71°71° from 360°360°.\newlineCalculation: 360°71°=289°360° - 71° = 289°
  2. Calculate related angle: Express sin(71)\sin(71^\circ) in terms of sin(289)\sin(289^\circ). Since sin(θ)=sin(180θ)\sin(\theta) = \sin(180^\circ - \theta) for angles in the first and second quadrants, and sin(θ)=sin(360θ)\sin(\theta) = \sin(360^\circ - \theta) for angles in the first and fourth quadrants, we can use the latter identity because 289289^\circ is in the fourth quadrant. Therefore, sin(71)=sin(360289)\sin(71^\circ) = \sin(360^\circ - 289^\circ). Calculation: 360289=71360^\circ - 289^\circ = 71^\circ, which confirms that sin(71)=sin(289)\sin(71^\circ) = \sin(289^\circ).

More problems from Sin, cos, and tan of special angles