Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(24+23 i)/(-9+2i)
Answer:

Express as a complex number in simplest a+bi form:\newline24+23i9+2i \frac{24+23 i}{-9+2 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline24+23i9+2i \frac{24+23 i}{-9+2 i} \newlineAnswer:
  1. Multiply Conjugate: Multiply the numerator and denominator by the conjugate of the denominator to remove the imaginary unit from the denominator.\newlineThe conjugate of (9+2i)(-9+2i) is (92i)(-9-2i).\newline24+23i9+2i92i92i\frac{24+23i}{-9+2i} \cdot \frac{-9-2i}{-9-2i}
  2. Apply Distributive Property: Apply the distributive property (foil method) to multiply out the numerators and the denominators.\newlineNumerator: (24+23i)×(92i)=24×(9)+24×(2i)+23i×(9)+23i×(2i)(24+23i) \times (-9-2i) = 24\times(-9) + 24\times(-2i) + 23i\times(-9) + 23i\times(-2i)\newlineDenominator: (9+2i)×(92i)=(9)×(9)+(9)×(2i)+2i×(9)+2i×(2i)(-9+2i) \times (-9-2i) = (-9)\times(-9) + (-9)\times(-2i) + 2i\times(-9) + 2i\times(-2i)
  3. Perform Multiplication: Perform the multiplication for both the numerator and the denominator.\newlineNumerator: 21648i207i46i2-216 - 48i - 207i - 46i^2\newlineSince i2=1i^2 = -1, replace 46i2-46i^2 with 4646.\newlineNumerator: 21648i207i+46-216 - 48i - 207i + 46\newlineDenominator: 8118i+18i4i281 - 18i + 18i - 4i^2\newlineSince i2=1i^2 = -1, replace 4i2-4i^2 with 44.\newlineDenominator: 81+481 + 4
  4. Combine Like Terms: Combine like terms in both the numerator and the denominator.\newlineNumerator: (216+46)+(48i207i)=170255i(-216 + 46) + (-48i - 207i) = -170 - 255i\newlineDenominator: (81+4)=85(81 + 4) = 85
  5. Divide Complex Numbers: Divide the numerator by the denominator to get the complex number in a+bia+bi form.\newline(170255i)/85=170/85(255i/85)(-170 - 255i) / 85 = -170/85 - (255i/85)
  6. Simplify Fractions: Simplify the fractions.\newline17085=2-\frac{170}{85} = -2\newline255i85=3i-\frac{255i}{85} = -3i\newlineSo, the complex number in a+bia+bi form is 23i-2 - 3i.

More problems from Write a quadratic function from its x-intercepts and another point