Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(24-13 i)/(2+i)
Answer:

Express as a complex number in simplest a+bi form:\newline2413i2+i \frac{24-13 i}{2+i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline2413i2+i \frac{24-13 i}{2+i} \newlineAnswer:
  1. Multiply by Conjugate: Multiply the numerator and denominator by the conjugate of the denominator to remove the imaginary unit from the denominator.\newlineThe conjugate of 2+i2+i is 2i2-i.\newlineSo, we multiply (2413i)/(2+i)(24-13i)/(2+i) by (2i)/(2i)(2-i)/(2-i) to rationalize the denominator.
  2. Numerator Multiplication: Perform the multiplication in the numerator.\newlineMultiply (2413i)(24-13i) by (2i)(2-i).\newlineUsing the distributive property (FOIL method):\newline242+24(i)13i213i(i)24\cdot 2 + 24\cdot (-i) - 13i\cdot 2 - 13i\cdot (-i)\newline= 4824i26i+13i248 - 24i - 26i + 13i^2\newlineSince i2=1i^2 = -1, replace 13i213i^2 with 13-13.\newline= 4824i26i1348 - 24i - 26i - 13\newline= 4813(24i+26i)48 - 13 - (24i + 26i)\newline= 3550i35 - 50i
  3. Denominator Multiplication: Perform the multiplication in the denominator.\newlineMultiply (2+i)(2+i) by (2i)(2-i).\newlineUsing the difference of squares:\newline2×2i×2+i×2i22\times 2 - i\times 2 + i\times 2 - i^2\newline=4i2= 4 - i^2\newlineSince i2=1i^2 = -1, replace i2-i^2 with 11.\newline=4+1= 4 + 1\newline=5= 5
  4. Final Complex Number: Divide the results from Step 22 by the result from Step 33 to get the complex number in a+bia+bi form.\newlinef(x)=3550i5f(x) = \frac{35 - 50i}{5}\newlineDivide both the real part and the imaginary part by 55.\newline=35550i5= \frac{35}{5} - \frac{50i}{5}\newline=710i= 7 - 10i

More problems from Write a quadratic function from its zeros