Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(-2+9i)/(-3-i)
Answer:

Express as a complex number in simplest a+bi form:\newline2+9i3i \frac{-2+9 i}{-3-i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline2+9i3i \frac{-2+9 i}{-3-i} \newlineAnswer:
  1. Multiply by conjugate: Multiply the numerator and denominator by the conjugate of the denominator to remove the imaginary unit from the denominator.\newlineThe conjugate of (3i)(-3-i) is (3+i)(-3+i).\newline2+9i3i×3+i3+i\frac{-2+9i}{-3-i} \times \frac{-3+i}{-3+i}
  2. Apply distributive property: Apply the distributive property (FOIL method) to both the numerator and the denominator.\newlineNumerator: (2+9i)(3+i)=(2)(3)+(2)(i)+(9i)(3)+(9i)(i)(-2+9i)(-3+i) = (-2)(-3) + (-2)(i) + (9i)(-3) + (9i)(i)\newlineDenominator: (3i)(3+i)=(3)(3)+(3)(i)+(i)(3)+(i)(i)(-3-i)(-3+i) = (-3)(-3) + (-3)(i) + (-i)(-3) + (-i)(i)
  3. Perform multiplication: Perform the multiplication for both the numerator and the denominator.\newlineNumerator: 62i27i9i26 - 2i - 27i - 9i^2\newlineSince i2=1i^2 = -1, we have 9i2=9-9i^2 = 9.\newlineNumerator becomes: 62i27i+96 - 2i - 27i + 9\newlineDenominator: 93i+3ii29 - 3i + 3i - i^2\newlineSince i2=1i^2 = -1, we have i2=1-i^2 = 1.\newlineDenominator becomes: 9+19 + 1
  4. Combine like terms: Combine like terms in both the numerator and the denominator.\newlineNumerator: (6+9)(2i+27i)=1529i(6 + 9) - (2i + 27i) = 15 - 29i\newlineDenominator: 9+1=109 + 1 = 10
  5. Write in a+bia+bi form: Write the complex number in a+bia+bi form by dividing the real and imaginary parts by the denominator.\newlineReal part: 1510=1.5\frac{15}{10} = 1.5\newlineImaginary part: 29i10=2.9i\frac{-29i}{10} = -2.9i\newlineSo, the complex number in a+bia+bi form is 1.52.9i1.5 - 2.9i.

More problems from Write a quadratic function from its x-intercepts and another point