Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(-2+5i)/(-1+i)
Answer:

Express as a complex number in simplest a+bi form:\newline2+5i1+i \frac{-2+5 i}{-1+i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline2+5i1+i \frac{-2+5 i}{-1+i} \newlineAnswer:
  1. Multiply by Conjugate: Multiply the numerator and denominator by the conjugate of the denominator to eliminate the imaginary unit ii from the denominator.\newlineThe conjugate of (1+i)(-1+i) is (1i)(-1-i).\newline2+5i1+i1i1i\frac{-2+5i}{-1+i} \cdot \frac{-1-i}{-1-i}
  2. Apply Distributive Property: Apply the distributive property (foil method) to multiply out the numerators and denominators.\newlineNumerator: (2+5i)×(1i)=(2)(1)+(2)(i)+(5i)(1)+(5i)(i)(-2+5i) \times (-1-i) = (-2)(-1) + (-2)(-i) + (5i)(-1) + (5i)(-i)\newlineDenominator: (1+i)×(1i)=(1)(1)+(1)(i)+(i)(1)+(i)(i)(-1+i) \times (-1-i) = (-1)(-1) + (-1)(-i) + (i)(-1) + (i)(-i)
  3. Perform Multiplication: Perform the multiplication for both the numerator and the denominator.\newlineNumerator: 2+2i5i5i22 + 2i - 5i - 5i^2\newlineSince i2=1i^2 = -1, replace i2i^2 with 1-1.\newlineNumerator: 2+2i5i+52 + 2i - 5i + 5\newlineDenominator: 1i+ii21 - i + i - i^2\newlineSimilarly, replace i2i^2 with 1-1 in the denominator.\newlineDenominator: 1+11 + 1
  4. Combine Like Terms: Combine like terms in both the numerator and the denominator.\newlineNumerator: (2+5)+(2i5i)(2 + 5) + (2i - 5i)\newlineNumerator: 73i7 - 3i\newlineDenominator: 1+11 + 1\newlineDenominator: 22
  5. Divide to Get Complex Number: Divide the numerator by the denominator to get the complex number in a+bia+bi form.\newline(73i)/2(7 - 3i) / 2\newlinea=72a = \frac{7}{2}\newlineb=32b = -\frac{3}{2}\newlineSo the complex number in a+bia+bi form is 7232i\frac{7}{2} - \frac{3}{2}i.

More problems from Write a quadratic function from its x-intercepts and another point