Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(16-28 i)/(-4-6i)
Answer:

Express as a complex number in simplest a+bi form:\newline1628i46i \frac{16-28 i}{-4-6 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline1628i46i \frac{16-28 i}{-4-6 i} \newlineAnswer:
  1. Identify complex conjugate: Identify the complex conjugate of the denominator.\newlineTo divide complex numbers, we multiply the numerator and the denominator by the complex conjugate of the denominator. The complex conjugate of (46i)(-4-6i) is (4+6i)(-4+6i).
  2. Multiply by conjugate: Multiply the numerator and the denominator by the complex conjugate of the denominator.\newlineWe have (1628i)/(46i)(16-28i)/(-4-6i). Multiply by (4+6i)/(4+6i)(-4+6i)/(-4+6i) to get rid of the imaginary part in the denominator.
  3. Distribute and multiply numerators: Apply the distributive property to multiply out the numerators.\newlineMultiply (1628i)(16-28i) by (4+6i)(-4+6i).\newline(1628i)(4+6i)=16(4)+16(6i)28i(4)28i(6i)(16-28i)(-4+6i) = 16(-4) + 16(6i) - 28i(-4) - 28i(6i)
  4. Calculate products in numerators: Calculate the products in the numerators.\newline16(4)=6416(-4) = -64\newline16(6i)=96i16(6i) = 96i\newline28i(4)=112i-28i(-4) = 112i\newline28i(6i)=168i2-28i(6i) = -168i^2 (Remember that i2=1i^2 = -1)
  5. Combine like terms in numerator: Combine like terms in the numerator.\newline64+96i+112i168(1)-64 + 96i + 112i - 168(-1)\newline64+208i+168-64 + 208i + 168\newline104+208i104 + 208i
  6. Distribute and multiply denominators: Apply the distributive property to multiply out the denominators.\newlineMultiply (46i)(-4-6i) by (4+6i)(-4+6i).\newline(46i)(4+6i)=(4)(4)+(4)(6i)6i(4)6i(6i)(-4-6i)(-4+6i) = (-4)(-4) + (-4)(6i) - 6i(-4) - 6i(6i)
  7. Calculate products in denominators: Calculate the products in the denominators.\newline(4)(4)=16(-4)(-4) = 16\newline(4)(6i)=24i(-4)(6i) = -24i\newline6i(4)=24i-6i(-4) = 24i\newline6i(6i)=36i2-6i(6i) = -36i^2 (Again, i2=1i^2 = -1)
  8. Combine like terms in denominator: Combine like terms in the denominator.\newline1624i+24i36(1)16 - 24i + 24i - 36(-1)\newline16+3616 + 36\newline5252
  9. Write in a+bia+bi form: Write the complex number in a+bia+bi form. Now we have the numerator 104+208i104 + 208i and the denominator 5252. Divide both the real part and the imaginary part of the numerator by the denominator. (104+208i)/52(104 + 208i) / 52 104/52+(208i/52)104/52 + (208i/52) 2+4i2 + 4i

More problems from Write a quadratic function from its zeros