Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(12-21 i)/(-6-9i)
Answer:

Express as a complex number in simplest a+bi form:\newline1221i69i \frac{12-21 i}{-6-9 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline1221i69i \frac{12-21 i}{-6-9 i} \newlineAnswer:
  1. Identify Complex Number: Identify the complex number to be simplified.\newlineWe have the complex number (1221i)/(69i)(12-21i)/(-6-9i) that we need to express in the form a+bia+bi.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineThe conjugate of the denominator 69i-6-9i is 6+9i-6+9i. We multiply both the numerator and the denominator by this conjugate to remove the imaginary part from the denominator.\newline(1221i)(6+9i)(69i)(6+9i)\frac{(12-21i)(-6+9i)}{(-6-9i)(-6+9i)}
  3. Numerator Multiplication: Perform the multiplication in the numerator.\newline(1221i)(6+9i)=12(6)+12(9i)21i(6)21i(9i)(12-21i)(-6+9i) = 12(-6) + 12(9i) - 21i(-6) - 21i(9i)\newline=72+108i+126i189i2= -72 + 108i + 126i - 189i^2\newlineSince i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=72+108i+126i+189= -72 + 108i + 126i + 189\newline=117+234i= 117 + 234i
  4. Denominator Multiplication: Perform the multiplication in the denominator.\newline(69i)(6+9i)=(6)(6)+(6)(9i)9i(6)9i(9i)(-6-9i)(-6+9i) = (-6)(-6) + (-6)(9i) - 9i(-6) - 9i(9i)\newline=3654i+54i81i2= 36 - 54i + 54i - 81i^2\newlineAgain, since i2=1i^2 = -1, we replace i2i^2 with 1-1.\newline=3654i+54i+81= 36 - 54i + 54i + 81\newline=117= 117
  5. Divide Numerator by Denominator: Divide the results from the numerator by the denominator.\newline(117+234i)/117(117 + 234i) / 117\newlineWe can split this into two fractions, one for the real part and one for the imaginary part.\newline117/117+(234i/117)117/117 + (234i/117)\newline= 1+2i1 + 2i
  6. Final Answer: Write the final answer in a+bia+bi form.\newlineThe simplified form of the complex number is 1+2i1 + 2i.

More problems from Write a quadratic function from its x-intercepts and another point