Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Express
9
x
−
5
2
(
2
x
−
1
)
(
x
−
1
)
\frac{9x-5}{2(2x-1)(x-1)}
2
(
2
x
−
1
)
(
x
−
1
)
9
x
−
5
in partial
fractions
.
View step-by-step help
Home
Math Problems
Algebra 2
Sum of finite series starts from 1
Full solution
Q.
Express
9
x
−
5
2
(
2
x
−
1
)
(
x
−
1
)
\frac{9x-5}{2(2x-1)(x-1)}
2
(
2
x
−
1
)
(
x
−
1
)
9
x
−
5
in partial fractions.
Rewrite and Solve:
Rewrite the expression as
A
2
x
−
1
+
B
x
−
1
\frac{A}{2x-1} + \frac{B}{x-1}
2
x
−
1
A
+
x
−
1
B
and solve for
A
A
A
and
B
B
B
.
Clear Fractions:
Multiply both sides by the denominator
2
(
2
x
−
1
)
(
x
−
1
)
2(2x-1)(x-1)
2
(
2
x
−
1
)
(
x
−
1
)
to clear the fractions:
(
9
x
−
5
)
=
A
(
2
(
x
−
1
)
)
+
B
(
2
x
−
1
)
(9x-5) = A(2(x-1)) + B(2x-1)
(
9
x
−
5
)
=
A
(
2
(
x
−
1
))
+
B
(
2
x
−
1
)
.
Choose Values:
Choose convenient values for
x
x
x
to solve for
A
A
A
and
B
B
B
. Let
x
=
1
x=1
x
=
1
, then
(
9
×
1
−
5
)
=
B
(
2
×
1
−
1
)
(9\times 1-5) = B(2\times 1-1)
(
9
×
1
−
5
)
=
B
(
2
×
1
−
1
)
, so
4
=
B
(
1
)
4 = B(1)
4
=
B
(
1
)
, hence
B
=
4
B = 4
B
=
4
.
Solve for
A
A
A
and
B
B
B
:
Now let
x
=
1
2
x=\frac{1}{2}
x
=
2
1
, then
(
9
⋅
1
2
−
5
)
=
A
(
2
⋅
(
1
2
−
1
)
)
(9\cdot\frac{1}{2}-5) = A(2\cdot(\frac{1}{2}-1))
(
9
⋅
2
1
−
5
)
=
A
(
2
⋅
(
2
1
−
1
))
, so
−
4.5
=
A
(
2
⋅
(
−
1
2
)
)
-4.5 = A(2\cdot(-\frac{1}{2}))
−
4.5
=
A
(
2
⋅
(
−
2
1
))
, hence
−
4.5
=
−
A
-4.5 = -A
−
4.5
=
−
A
, so
A
=
4.5
A = 4.5
A
=
4.5
.
More problems from Sum of finite series starts from 1
Question
Find the sum of the finite arithmetic series.
∑
n
=
1
10
(
7
n
+
4
)
\sum_{n=1}^{10} (7n+4)
∑
n
=
1
10
(
7
n
+
4
)
\newline
______
Get tutor help
Posted 1 year ago
Question
Type the missing number in this sequence: `55,\59,\63,\text{_____},\71,\75,\79`
Get tutor help
Posted 9 months ago
Question
Type the missing number in this sequence: `2, 4 8`, ______,`32`
Get tutor help
Posted 9 months ago
Question
What kind of sequence is this?
2
,
10
,
50
,
250
,
…
2, 10, 50, 250, \ldots
2
,
10
,
50
,
250
,
…
Choices:Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 9 months ago
Question
What is the missing number in this pattern?
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
_
_
_
_
1, 4, 9, 16, 25, 36, 49, 64, 81, \_\_\_\_
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
____
Get tutor help
Posted 1 year ago
Question
Classify the series.
∑
n
=
0
12
(
n
+
2
)
3
\sum_{n = 0}^{12} (n + 2)^3
∑
n
=
0
12
(
n
+
2
)
3
\newline
Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 9 months ago
Question
Find the first three partial sums of the series.
\newline
1
+
6
+
11
+
16
+
21
+
26
+
⋯
1 + 6 + 11 + 16 + 21 + 26 + \cdots
1
+
6
+
11
+
16
+
21
+
26
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the third partial sum of the series.
\newline
3
+
9
+
15
+
21
+
27
+
33
+
⋯
3 + 9 + 15 + 21 + 27 + 33 + \cdots
3
+
9
+
15
+
21
+
27
+
33
+
⋯
\newline
Write your answer as an integer or a fraction in simplest form.
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the first three partial sums of the series.
\newline
1
+
7
+
13
+
19
+
25
+
31
+
⋯
1 + 7 + 13 + 19 + 25 + 31 + \cdots
1
+
7
+
13
+
19
+
25
+
31
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Does the infinite geometric series converge or diverge?
\newline
1
+
3
4
+
9
16
+
27
64
+
⋯
1 + \frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots
1
+
4
3
+
16
9
+
64
27
+
⋯
\newline
Choices:
\newline
[A]converge
\text{[A]converge}
[A]converge
\newline
[B]diverge
\text{[B]diverge}
[B]diverge
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant