Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the left hand side to find the value of 
a in the equation in simplest form.

x^(2)x^((3)/(2))=x^(a)
Answer:

Evaluate the left hand side to find the value of a a in the equation in simplest form.\newlinex2x32=xa x^{2} x^{\frac{3}{2}}=x^{a} \newlineAnswer:

Full solution

Q. Evaluate the left hand side to find the value of a a in the equation in simplest form.\newlinex2x32=xa x^{2} x^{\frac{3}{2}}=x^{a} \newlineAnswer:
  1. Use Exponent Property: To find the value of aa, we need to use the property of exponents that states when you multiply powers with the same base, you add the exponents.\newlineCalculation: x2×x32=x2+32x^{2} \times x^{\frac{3}{2}} = x^{2 + \frac{3}{2}}
  2. Add Exponents: Now we add the exponents 22 and (3)/(2)(3)/(2).\newlineCalculation: 2+(3)/(2)=(4)/(2)+(3)/(2)=(7)/(2)2 + (3)/(2) = (4)/(2) + (3)/(2) = (7)/(2)
  3. Find Value of a: We have found the value of a by adding the exponents.\newlineFinal Answer: a=72a = \frac{7}{2}

More problems from Transformations of quadratic functions