Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=3)^(6)(nx-3)
Answer:

Evaluate:\newlinen=36(nx3) \sum_{n=3}^{6}(n x-3) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=36(nx3) \sum_{n=3}^{6}(n x-3) \newlineAnswer:
  1. Understand summation notation: Understand the summation notation. The expression n=36(nx3)\sum_{n=3}^{6}(nx-3) means we need to evaluate (nx3)(nx-3) for each integer value of nn from 33 to 66 and then sum the results.
  2. Evaluate for n=3n=3: Evaluate the expression for n=3n=3. Substitute n=3n=3 into the expression (nx3)(nx-3) to get (3x3)(3x-3).
  3. Evaluate for n=4n=4: Evaluate the expression for n=4n=4.\newlineSubstitute n=4n=4 into the expression (nx3)(nx-3) to get (4x3)(4x-3).
  4. Evaluate for n=5n=5: Evaluate the expression for n=5n=5. Substitute n=5n=5 into the expression (nx3)(nx-3) to get (5x3)(5x-3).
  5. Evaluate for n=6n=6: Evaluate the expression for n=6n=6. Substitute n=6n=6 into the expression (nx3)(nx-3) to get (6x3)(6x-3).
  6. Sum the results: Sum the results from steps 22 to 55. Add the expressions obtained for each value of nn: (3x3)+(4x3)+(5x3)+(6x3)(3x-3) + (4x-3) + (5x-3) + (6x-3).
  7. Combine like terms: Combine like terms.\newlineCombine the xx terms: 3x+4x+5x+6x=18x3x + 4x + 5x + 6x = 18x.\newlineCombine the constant terms: 3333=12-3 - 3 - 3 - 3 = -12.\newlineSo, the sum is 18x1218x - 12.

More problems from Evaluate rational expressions II