Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=3)^(5)(nx+4)
Answer:

Evaluate:\newlinen=35(nx+4) \sum_{n=3}^{5}(n x+4) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=35(nx+4) \sum_{n=3}^{5}(n x+4) \newlineAnswer:
  1. Understand the problem: Understand the problem We need to evaluate the sum of the expression (nx+4)(n x + 4) for nn ranging from 33 to 55.
  2. Write out the terms: Write out the terms of the sum\newlineThe sum from n=3n=3 to n=5n=5 of (nx+4)(nx + 4) means we need to calculate (3x+4)+(4x+4)+(5x+4)(3x + 4) + (4x + 4) + (5x + 4).
  3. Evaluate each term: Evaluate each term\newlineFirst term when n=3n=3: (3x+4)(3x + 4)\newlineSecond term when n=4n=4: (4x+4)(4x + 4)\newlineThird term when n=5n=5: (5x+4)(5x + 4)
  4. Add the terms together: Add the terms together\newlineNow we add the terms we found in Step 33 together:\newline(3x+4)+(4x+4)+(5x+4)(3x + 4) + (4x + 4) + (5x + 4)
  5. Combine like terms: Combine like terms\newlineCombine the xx terms: 3x+4x+5x=12x3x + 4x + 5x = 12x\newlineCombine the constant terms: 4+4+4=124 + 4 + 4 = 12\newlineSo, (3x+4)+(4x+4)+(5x+4)=12x+12(3x + 4) + (4x + 4) + (5x + 4) = 12x + 12

More problems from Evaluate rational expressions II