Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=2)^(5)(nx+4)
Answer:

Evaluate:\newlinen=25(nx+4) \sum_{n=2}^{5}(n x+4) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=25(nx+4) \sum_{n=2}^{5}(n x+4) \newlineAnswer:
  1. Understand summation notation: Understand the summation notation.\newlineThe expression n=25(nx+4)\sum_{n=2}^{5}(nx+4) means we need to add the terms (nx+4)(nx+4) for each integer value of nn starting from 22 and ending at 55.
  2. Calculate term for n=2n=2: Calculate the term for n=2n=2.\newlineSubstitute n=2n=2 into the expression (nx+4)(nx+4).\newline(2x+4)(2x+4)
  3. Calculate term for n=3n=3: Calculate the term for n=3n=3.\newlineSubstitute n=3n=3 into the expression (nx+4)(nx+4).\newline(3x+4)(3x+4)
  4. Calculate term for n=4n=4: Calculate the term for n=4n=4.\newlineSubstitute n=4n=4 into the expression (nx+4)(nx+4).\newline(4x+4)(4x+4)
  5. Calculate term for n=5n=5: Calculate the term for n=5n=5.\newlineSubstitute n=5n=5 into the expression (nx+4)(nx+4).\newline(5x+4)(5x+4)
  6. Add all terms together: Add all the terms together.\newlineAdd the terms from Step 22 to Step 55.\newline(2x+4)+(3x+4)+(4x+4)+(5x+4)(2x+4) + (3x+4) + (4x+4) + (5x+4)
  7. Combine like terms: Combine like terms.\newlineCombine the xx terms and the constant terms.\newline2x+3x+4x+5x+4+4+4+42x + 3x + 4x + 5x + 4 + 4 + 4 + 4\newline14x+1614x + 16

More problems from Evaluate rational expressions II