Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=2)^(5)(-3x-4n)
Answer:

Evaluate:\newlinen=25(3x4n) \sum_{n=2}^{5}(-3 x-4 n) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=25(3x4n) \sum_{n=2}^{5}(-3 x-4 n) \newlineAnswer:
  1. Understand the problem: Understand the problem We need to evaluate the sum of the expression (3x4n)(-3x - 4n) for each integer value of nn from 22 to 55.
  2. Write terms of sum: Write out the terms of the sum\newlineThe sum is the addition of the expression (3x4n)(-3x - 4n) evaluated at n=2n = 2, n=3n = 3, n=4n = 4, and n=5n = 5.
  3. Evaluate n=2n=2: Evaluate the expression for n=2n = 2 Substitute n=2n = 2 into the expression (3x4n)(-3x - 4n). (3x4×2)=(3x8)(-3x - 4\times2) = (-3x - 8)
  4. Evaluate n=3n=3: Evaluate the expression for n=3n = 3 Substitute n=3n = 3 into the expression (3x4n)(-3x - 4n). (3x4×3)=(3x12)(-3x - 4\times3) = (-3x - 12)
  5. Evaluate n=4n=4: Evaluate the expression for n=4n = 4 Substitute n=4n = 4 into the expression (3x4n)(-3x - 4n). (3x4×4)=(3x16)(-3x - 4\times4) = (-3x - 16)
  6. Evaluate n=5n=5: Evaluate the expression for n=5n = 5 Substitute n=5n = 5 into the expression (3x4n(-3x - 4n). (3x4×5(-3x - 4\times5 = (3-3x - 2020\))
  7. Add evaluated expressions: Add the evaluated expressions\newlineAdd the results from steps 33 to 66.\newline(3x8)+(3x12)+(3x16)+(3x20)(-3x - 8) + (-3x - 12) + (-3x - 16) + (-3x - 20)
  8. Combine like terms: Combine like terms\newlineCombine the terms with xx and the constant terms separately.\newline(3x3x3x3x)+(8121620)(-3x - 3x - 3x - 3x) + (-8 - 12 - 16 - 20)\newline(12x)+(56)(-12x) + (-56)
  9. Simplify expression: Simplify the expression Simplify the sum to get the final answer. 12x56-12x - 56

More problems from Evaluate rational expressions II