Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=2)^(4)(nx+2)
Answer:

Evaluate:\newlinen=24(nx+2) \sum_{n=2}^{4}(n x+2) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=24(nx+2) \sum_{n=2}^{4}(n x+2) \newlineAnswer:
  1. Evaluate n=2n=2: Let's start by evaluating the expression for n=2n=2. Substitute n=2n=2 into the expression (nx+2)(nx+2) to get (2x+2)(2x+2).
  2. Evaluate n=3n=3: Now, evaluate the expression for n=3n=3. Substitute n=3n=3 into the expression (nx+2)(nx+2) to get (3x+2)(3x+2).
  3. Evaluate n=4n=4: Next, evaluate the expression for n=4n=4. Substitute n=4n=4 into the expression (nx+2)(nx+2) to get (4x+2)(4x+2).
  4. Add Results: Now, we will add the results from n=2n=2, n=3n=3, and n=4n=4. Add (2x+2)(2x+2), (3x+2)(3x+2), and (4x+2)(4x+2) together. (2x+2)+(3x+2)+(4x+2)=2x+3x+4x+2+2+2(2x+2) + (3x+2) + (4x+2) = 2x + 3x + 4x + 2 + 2 + 2
  5. Combine Like Terms: Combine like terms to simplify the expression. \newline2x+3x+4x=9x2x + 3x + 4x = 9x and 2+2+2=62 + 2 + 2 = 6, so the simplified expression is 9x+69x + 6.

More problems from Evaluate rational expressions II