Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate:

sum_(n=0)^(2)(nx+3)
Answer:

Evaluate:\newlinen=02(nx+3) \sum_{n=0}^{2}(n x+3) \newlineAnswer:

Full solution

Q. Evaluate:\newlinen=02(nx+3) \sum_{n=0}^{2}(n x+3) \newlineAnswer:
  1. Evaluate n=0n=0: Evaluate the expression for n=0n=0.\newlineWhen n=0n=0, the expression (nx+3)(nx+3) becomes (0×x+3)(0\times x+3), which simplifies to 33.
  2. Evaluate n=1n=1: Evaluate the expression for n=1n=1.\newlineWhen n=1n=1, the expression (nx+3)(nx+3) becomes (1×x+3)(1\times x+3), which simplifies to x+3x+3.
  3. Evaluate n=2n=2: Evaluate the expression for n=2n=2.\newlineWhen n=2n=2, the expression (nx+3)(nx+3) becomes (2×x+3)(2\times x+3), which simplifies to 2x+32x+3.
  4. Sum results n=0n=0 to n=2n=2: Sum the results from n=0n=0 to n=2n=2. Now we add the results from each step: 3+(x+3)+(2x+3)3 + (x+3) + (2x+3). This simplifies to 3+x+3+2x+33 + x + 3 + 2x + 3.
  5. Combine like terms: Combine like terms.\newlineAdding the constants: 3+3+3=93 + 3 + 3 = 9.\newlineAdding the xx terms: x+2x=3xx + 2x = 3x.\newlineSo the sum is 3x+93x + 9.

More problems from Evaluate rational expressions II