Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(sqrt98)/(2^((1)/(2)))=

Evaluate.\newline98212= \frac{\sqrt{98}}{2^{\frac{1}{2}}}=

Full solution

Q. Evaluate.\newline98212= \frac{\sqrt{98}}{2^{\frac{1}{2}}}=
  1. Apply quotient rule of radical: Apply the quotient rule of radical to 98212\frac{\sqrt{98}}{2^{\frac{1}{2}}}.98212=9822\frac{\sqrt{98}}{2^{\frac{1}{2}}} = \frac{\sqrt{98}}{\sqrt{2^2}}
  2. Simplify denominator: Simplify the denominator. 22=4=2\sqrt{2^2} = \sqrt{4} = 2
  3. Find prime factorization of 9898: Find the prime factorization of 9898 and try to make identical pairs of factors.\newline98=2×7×7\sqrt{98} = \sqrt{2 \times 7 \times 7}\newline= 2\sqrt{2} ×\times 72\sqrt{7^2}\newline= 2\sqrt{2} ×\times 77
  4. Combine previous results: Combine the results from the previous steps.\newline(98)/(21/2)=(2×7)/2(\sqrt{98})/(2^{1/2}) = (\sqrt{2} \times 7) / 2
  5. Simplify expression: Simplify the expression. (2×7)/2=(7/2)×2(\sqrt{2} \times 7) / 2 = (7/2) \times \sqrt{2}

More problems from Simplify radical expressions involving fractions