Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(3)^(4)(2x^(2)-15 x+22)/(x-5)dx. Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).
Submit Answer

Evaluate 342x215x+22x5dx \int_{3}^{4} \frac{2 x^{2}-15 x+22}{x-5} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).\newlineSubmit Answer

Full solution

Q. Evaluate 342x215x+22x5dx \int_{3}^{4} \frac{2 x^{2}-15 x+22}{x-5} d x . Write your answer in simplest form with all logs condensed into a single logarithm (if necessary).\newlineSubmit Answer
  1. Identify Integral: Identify the integral to be evaluated.\newlineWe need to evaluate the integral of the function (2x215x+22)/(x5)(2x^2 - 15x + 22)/(x - 5) from x=3x = 3 to x=4x = 4.
  2. Perform Long Division: Perform polynomial long division.\newlineBefore integrating, we should simplify the integrand by performing polynomial long division of (2x215x+22)(2x^2 - 15x + 22) by (x5)(x - 5).
  3. Carry Out Division: Carry out the long division.\newlineDividing 2x22x^2 by xx gives 2x2x. Multiply (x5)(x - 5) by 2x2x to get 2x210x2x^2 - 10x. Subtract this from the original polynomial to get 5x+22-5x + 22. Dividing 5x-5x by xx gives 5-5. Multiply (x5)(x - 5) by 5-5 to get xx22. Subtract this from 5x+22-5x + 22 to get xx44. The result of the division is xx55 with a remainder of xx44.\newlineSo, xx77.
  4. Set Up Integral: Set up the integral with the simplified integrand.\newlineNow we can write the integral as:\newline34(2x5)dx34(3x5)dx\int_{3}^{4}(2x - 5) \, dx - \int_{3}^{4}\left(\frac{3}{x - 5}\right) \, dx.
  5. Integrate First Part: Integrate the first part of the simplified integrand.\newlineThe integral of 2x52x - 5 with respect to xx is x25xx^2 - 5x.
  6. Integrate Second Part: Integrate the second part of the simplified integrand.\newlineThe integral of 3x5\frac{3}{x - 5} with respect to xx is 3lnx53\ln|x - 5|.
  7. Combine and Evaluate: Combine the integrals and evaluate from 33 to 44. The combined integral is (x25x)3lnx5(x^2 - 5x) - 3\ln|x - 5| from x=3x = 3 to x=4x = 4.
  8. Evaluate Definite Integral: Evaluate the definite integral.\newlinePlug in the upper limit x=4x = 4 and the lower limit x=3x = 3 into the antiderivative and subtract the two results.\newlineFor x=4x = 4: (4254)3ln45=(1620)3ln1=43ln(1)(4^2 - 5\cdot 4) - 3\ln|4 - 5| = (16 - 20) - 3\ln|-1| = -4 - 3\ln(1)\newlineFor x=3x = 3: (3253)3ln35=(915)3ln2=63ln(2)(3^2 - 5\cdot 3) - 3\ln|3 - 5| = (9 - 15) - 3\ln|-2| = -6 - 3\ln(2)\newlineNow subtract the lower limit result from the upper limit result: (43ln(1))(63ln(2))=4+63ln(1)+3ln(2)=2+3ln(2)(-4 - 3\ln(1)) - (-6 - 3\ln(2)) = -4 + 6 - 3\ln(1) + 3\ln(2) = 2 + 3\ln(2)
  9. Simplify Final Expression: Simplify the final expression.\newlineSince ln(1)\ln(1) is 00, the expression simplifies to 2+3ln(2)2 + 3\ln(2).

More problems from Evaluate rational expressions II