Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int_(0)^(6)(3e^(0.5 x)-2x)dx and express the answer in simplest form.
Answer:

Evaluate 06(3e0.5x2x)dx \int_{0}^{6}\left(3 e^{0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:

Full solution

Q. Evaluate 06(3e0.5x2x)dx \int_{0}^{6}\left(3 e^{0.5 x}-2 x\right) d x and express the answer in simplest form.\newlineAnswer:
  1. Identify Integral: Identify the integral to be evaluated.\newlineWe need to evaluate the integral of the function 3e0.5x2x3e^{0.5x} - 2x with respect to xx from 00 to 66.\newlineThe integral is written as 06(3e0.5x2x)dx\int_{0}^{6} (3e^{0.5x} - 2x) \, dx.
  2. Break into Two: Break the integral into two separate integrals.\newlineWe can separate the integral into two parts: one for 3e0.5x3e^{0.5x} and one for 2x-2x.\newlineSo, 06(3e0.5x2x)dx=063e0.5xdx062xdx\int_{0}^{6} (3e^{0.5x} - 2x) \, dx = \int_{0}^{6} 3e^{0.5x} \, dx - \int_{0}^{6} 2x \, dx.
  3. Evaluate First Integral: Evaluate the first integral 063e(0.5x)dx\int_{0}^{6} 3e^{(0.5x)} \, dx. To integrate 3e(0.5x)3e^{(0.5x)}, we use the fact that the integral of e(ax)e^{(ax)} is (1/a)e(ax)(1/a)e^{(ax)}. Thus, the integral of 3e(0.5x)3e^{(0.5x)} is (3/(0.5))e(0.5x)=6e(0.5x)(3/(0.5))e^{(0.5x)} = 6e^{(0.5x)}. Evaluating from 00 to 66 gives us 6e(0.56)6e(0.50)6e^{(0.5\cdot6)} - 6e^{(0.5\cdot0)}.
  4. Evaluate Second Integral: Evaluate the second integral 062xdx\int_{0}^{6} 2x \, dx. The integral of 2x2x with respect to xx is x2x^2. Evaluating from 00 to 66 gives us 6202=360=366^2 - 0^2 = 36 - 0 = 36.
  5. Combine Results: Combine the results from Step 33 and Step 44.\newlineWe have 6e0.5×66e0.5×0366e^{0.5\times 6} - 6e^{0.5\times 0} - 36.\newlineNow we need to calculate the values of e0.5×6e^{0.5\times 6} and e0.5×0e^{0.5\times 0}.\newlinee0.5×6=e3e^{0.5\times 6} = e^3 and e0.5×0=e0=1e^{0.5\times 0} = e^0 = 1.\newlineSo, the result is 6e36(1)366e^3 - 6(1) - 36.
  6. Simplify Expression: Simplify the expression. 6e3636=6e3426e^3 - 6 - 36 = 6e^3 - 42. This is the final value of the definite integral.

More problems from Evaluate rational expressions II