Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-(4)/(3))^(3)=

Evaluate.\newline(43)3= \left(-\frac{4}{3}\right)^{3}=

Full solution

Q. Evaluate.\newline(43)3= \left(-\frac{4}{3}\right)^{3}=
  1. Identify base and exponent: Identify the base and the exponent.\newlineIn the expression (43)3\left(-\frac{4}{3}\right)^3, 43-\frac{4}{3} is the base raised to the exponent 33.\newlineBase: 43-\frac{4}{3}\newlineExponent: 33
  2. Choose expanded form: Choose the expanded form of ((43))3(-(\frac{4}{3}))^3. The base is (43)-(\frac{4}{3}) and the exponent is 33. So, ((43))3(-(\frac{4}{3}))^3 means (43)-(\frac{4}{3}) is multiplied by itself 33 times. Expanded Form of ((43))3(-(\frac{4}{3}))^3: ((43))×((43))×((43))(-(\frac{4}{3})) \times (-(\frac{4}{3})) \times (-(\frac{4}{3}))
  3. Multiply to simplify: ((43))3=((43))×((43))×((43))(-\left(\frac{4}{3}\right))^3 = (-\left(\frac{4}{3}\right)) \times (-\left(\frac{4}{3}\right)) \times (-\left(\frac{4}{3}\right))
    Multiply to write in simplest form.
    ((43))3(-\left(\frac{4}{3}\right))^3
    = ((43))×((43))×((43))(-\left(\frac{4}{3}\right)) \times (-\left(\frac{4}{3}\right)) \times (-\left(\frac{4}{3}\right))
    = (43)×(43)×(43)(-\frac{4}{3}) \times (-\frac{4}{3}) \times (-\frac{4}{3})
    = (4×4×4)/(3×3×3)(-4 \times -4 \times -4) / (3 \times 3 \times 3)
    = (64)/27(-64) / 27
    Since the base is negative and the exponent is odd, the result will be negative.
  4. Simplify the result: Simplify the result.\newline(64)/27(-64) / 27 is already in its simplest form.\newlineSo, the simplest form of ((4/3))3(-(4/3))^3 is (64)/27(-64) / 27.