Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-4(1)/(2))^(2)=

Evaluate.\newline(412)2= \left(-4 \frac{1}{2}\right)^{2}=

Full solution

Q. Evaluate.\newline(412)2= \left(-4 \frac{1}{2}\right)^{2}=
  1. Identify Base and Exponent: Identify the base and the exponent.\newlineIn the expression (4(1)/(2))2(-4(1)/(2))^2, 4(1)/(2)-4(1)/(2) is the base raised to the exponent 22.\newlineBase: 4(1)/(2)-4(1)/(2) \newlineExponent: 22
  2. Rewrite Base as Fraction: Rewrite the base as a single fraction.\newlineThe base 4(12)-4\left(\frac{1}{2}\right) can be rewritten as 4+12-4 + \frac{1}{2} which simplifies to 82+12-\frac{8}{2} + \frac{1}{2}, which is 72-\frac{7}{2}.\newlineSo, (4(12))2(-4\left(\frac{1}{2}\right))^2 becomes (72)2(-\frac{7}{2})^2.
  3. Choose Expanded Form: Choose the expanded form of (72)2(-\frac{7}{2})^2. The base is 72-\frac{7}{2} and the exponent is 22. So, (72)2(-\frac{7}{2})^2 means 72-\frac{7}{2} is multiplied by itself once. Expanded Form of (72)2(-\frac{7}{2})^2: (72)×(72)(-\frac{7}{2}) \times (-\frac{7}{2})
  4. Multiply for Simplest Form: Multiply to write in simplest form.\newline(72)2(-\frac{7}{2})^2\newline= (72)×(72)(-\frac{7}{2}) \times (-\frac{7}{2})\newline= \frac{4949}{44}\newlineThe simplest form of (72)2(-\frac{7}{2})^2 is \frac{4949}{44}.