Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-3(1)/(2))^(2)=

Evaluate.\newline(312)2= \left(-3 \frac{1}{2}\right)^{2}=

Full solution

Q. Evaluate.\newline(312)2= \left(-3 \frac{1}{2}\right)^{2}=
  1. Identify base and exponent: Identify the base and the exponent.\newlineIn the expression (3(1)/(2))2(-3(1)/(2))^{2}, 3(1)/(2)-3(1)/(2) is the base raised to the exponent 22.\newlineBase: 3(1)/(2)-3(1)/(2)\newlineExponent: 22
  2. Choose expanded form: Choose the expanded form of (312)2(-3\frac{1}{2})^{2}. The base is 312-3\frac{1}{2} and the exponent is 22. So, (312)2(-3\frac{1}{2})^{2} means 312-3\frac{1}{2} is multiplied by itself 22 times. Expanded Form of (312)2(-3\frac{1}{2})^{2}: (312)×(312)(-3\frac{1}{2}) \times (-3\frac{1}{2})
  3. Multiply to simplest form: (3(1)/(2))2=(3(1)/(2))×(3(1)/(2))(-3(1)/(2))^{2} = (-3(1)/(2)) \times (-3(1)/(2))\newlineMultiply to write in simplest form.\newline(3(1)/(2))2(-3(1)/(2))^{2}\newline=(3(1)/(2))×(3(1)/(2))= (-3(1)/(2)) \times (-3(1)/(2))\newline=(9/4)= (9/4)\newlineThe simplest form of (3(1)/(2))2(-3(1)/(2))^{2} is 9/49/4.