Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-2(3)/(4))^(2)=

Evaluate.\newline(234)2= \left(-2 \frac{3}{4}\right)^{2}=

Full solution

Q. Evaluate.\newline(234)2= \left(-2 \frac{3}{4}\right)^{2}=
  1. Identify Base and Exponent: Identify the base and the exponent.\newlineIn the expression (2(3)/(4))2(-2(3)/(4))^2, 2(3)/(4)-2(3)/(4) is the base raised to the exponent 22.\newlineBase: 2(3)/(4)-2(3)/(4) \newlineExponent: 22
  2. Simplify Base: Simplify the base before applying the exponent.\newlineThe base 2(34)-2\left(\frac{3}{4}\right) can be simplified by multiplying 2-2 by (34)\left(\frac{3}{4}\right).\newlineSimplified Base: 2×(34)=64=32-2 \times \left(\frac{3}{4}\right) = -\frac{6}{4} = -\frac{3}{2}
  3. Apply Exponent: Apply the exponent to the simplified base.\newlineNow we raise the simplified base (32)(-\frac{3}{2}) to the power of 22.\newline(32)2(-\frac{3}{2})^2 means (32)(-\frac{3}{2}) is multiplied by itself.\newline(32)2=(32)×(32)(-\frac{3}{2})^2 = (-\frac{3}{2}) \times (-\frac{3}{2})
  4. Multiply Fractions: Multiply the fractions.\newlineTo multiply fractions, multiply the numerators together and the denominators together.\newline(32)×(32)=94(-\frac{3}{2}) \times (-\frac{3}{2}) = \frac{9}{4}
  5. Write Final Answer: Write the final answer.\newlineThe simplest form of (32)2(-\frac{3}{2})^2 is 94\frac{9}{4}.