Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-2(2)/(5))^(2)=

Evaluate.\newline(225)2= \left(-2 \frac{2}{5}\right)^{2}=

Full solution

Q. Evaluate.\newline(225)2= \left(-2 \frac{2}{5}\right)^{2}=
  1. Identify Base and Exponent: Identify the base and the exponent.\newlineIn the expression (2(2)/(5))2(-2(2)/(5))^{2}, 2(2)/(5)-2(2)/(5) is the base raised to the exponent 22.\newlineBase: 2(2)/(5)-2(2)/(5)\newlineExponent: 22
  2. Simplify Base: Simplify the base before applying the exponent.\newlineThe base 2(25)-2\left(\frac{2}{5}\right) can be simplified by multiplying 2-2 by (25)\left(\frac{2}{5}\right).\newlineSimplified Base: 2×(25)=45-2 \times \left(\frac{2}{5}\right) = -\frac{4}{5}
  3. Apply Exponent: Apply the exponent to the simplified base.\newlineNow that we have the simplified base, we can raise it to the power of 22.\newline(45)2(-\frac{4}{5})^{2} means (45)(-\frac{4}{5}) is multiplied by itself once.\newlineExpanded Form of (45)2(-\frac{4}{5})^{2}: \newline(45)×(45)(-\frac{4}{5}) \times (-\frac{4}{5})
  4. Multiply for Simplest Form: Multiply to write in simplest form.\newline(45)×(45)=1625(-\frac{4}{5}) \times (-\frac{4}{5}) = \frac{16}{25}\newlineWhen multiplying two negative numbers, the result is positive.