Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Elena is solving the following equation for 
x.

root(3)(3x-5)+2=7
Her first few steps are given below.

{:[root(3)(3x-5)=5],[(root(3)(3x-5))^(3)=(5)^(3)],[3x-5=125]:}
Is it necessary for Elena to check her answers for extraneous solutions?
Choose 1 answer:
(A) Yes
(B) No

Elena is solving the following equation for x x .\newline3x53+2=7 \sqrt[3]{3 x-5}+2=7 \newlineHer first few steps are given below.\newline3x53amp;=5(3x53)3amp;=(5)33x5amp;=125 \begin{aligned} \sqrt[3]{3 x-5} & =5 \\ (\sqrt[3]{3 x-5})^{3} & =(5)^{3} \\ 3 x-5 & =125 \end{aligned} \newlineIs it necessary for Elena to check her answers for extraneous solutions?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No

Full solution

Q. Elena is solving the following equation for x x .\newline3x53+2=7 \sqrt[3]{3 x-5}+2=7 \newlineHer first few steps are given below.\newline3x53=5(3x53)3=(5)33x5=125 \begin{aligned} \sqrt[3]{3 x-5} & =5 \\ (\sqrt[3]{3 x-5})^{3} & =(5)^{3} \\ 3 x-5 & =125 \end{aligned} \newlineIs it necessary for Elena to check her answers for extraneous solutions?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No
  1. Start with equation: Elena starts with the equation:\newline3x53+2=7 \sqrt[3]{3x - 5} + 2 = 7 \newlineShe wants to isolate the cube root term, so she subtracts 22 from both sides of the equation:\newline3x53=5 \sqrt[3]{3x - 5} = 5
  2. Subtract to isolate: Next, Elena raises both sides of the equation to the power of 33 to eliminate the cube root:\newline(3x53)3=53 (\sqrt[3]{3x - 5})^3 = 5^3 \newlineThis gives us:\newline3x5=125 3x - 5 = 125
  3. Raise to eliminate: Elena then adds 55 to both sides of the equation to solve for x:\newline3x=130 3x = 130
  4. Add to solve for x: Finally, Elena divides both sides by 33 to find the value of x:\newlinex=1303 x = \frac{130}{3}

More problems from Interpret parts of quadratic expressions: word problems