Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Does the infinite geometric series converge or diverge?\newline1+73+499+34327+1 + \frac{7}{3} + \frac{49}{9} + \frac{343}{27} + \ldots\newlineChoices:\newline(A) converge\newline(B) diverge

Full solution

Q. Does the infinite geometric series converge or diverge?\newline1+73+499+34327+1 + \frac{7}{3} + \frac{49}{9} + \frac{343}{27} + \ldots\newlineChoices:\newline(A) converge\newline(B) diverge
  1. Identify Common Ratio: Identify the common ratio of the geometric series by dividing a term by its preceding term.\newlineWe can take the second term (73)(\frac{7}{3}) and divide it by the first term (1)(1):\newlineCommon Ratio (r)=731=73(r) = \frac{\frac{7}{3}}{1} = \frac{7}{3}
  2. Find Absolute Value: Find the absolute value of the common ratio.\newline|r| = |\frac{\(7\)}{\(3\)}|\(\newline|r| = \frac{77}{33}\newline)
  3. Determine Convergence: Determine if the given geometric series converges or diverges.\newlineA geometric series converges if the absolute value of the common ratio is less than 11.\newlineSince |r| = \frac{7}{3} > 1, the series diverges.

More problems from Convergent and divergent geometric series