Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Does the infinite geometric series converge or diverge?\newline1+52+254+1258+1 + \frac{5}{2} + \frac{25}{4} + \frac{125}{8} + \ldots\newlineChoices:\newline(A) converge\newline(B) diverge

Full solution

Q. Does the infinite geometric series converge or diverge?\newline1+52+254+1258+1 + \frac{5}{2} + \frac{25}{4} + \frac{125}{8} + \ldots\newlineChoices:\newline(A) converge\newline(B) diverge
  1. Identify Common Ratio: Identify the common ratio of the geometric series by dividing two consecutive terms.\newlineThe first term is 11 and the second term is 52\frac{5}{2}.\newlineTo find the common ratio (r)(r), divide the second term by the first term: (52)/1=52\left(\frac{5}{2}\right) / 1 = \frac{5}{2}.\newlineCommon Ratio (r)(r): 52\frac{5}{2}
  2. Calculate Absolute Value: Calculate the absolute value of the common ratio.\newline|r| = |\frac{\(5\)}{\(2\)}|\(\newline|r| = \frac{55}{22}\newline)
  3. Determine Convergence: Determine if the given geometric series converges or diverges based on the absolute value of the common ratio.\newlineSince |r| = \frac{5}{2} > 1, the series diverges.

More problems from Convergent and divergent geometric series