Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide. Write your answer in simplest form. \newline312u3+20u23\frac{3}{12}u^{3} + \frac{20u^{2}}{3}

Full solution

Q. Divide. Write your answer in simplest form. \newline312u3+20u23\frac{3}{12}u^{3} + \frac{20u^{2}}{3}
  1. Write as Fraction: Write the division problem as a fraction.\newlineThe division of a fraction by a number can be written as the multiplication of the fraction by the reciprocal of the number. So, we have:\newline312u3+20u2\frac{3}{12u^3 + 20u^2} ÷\div 33 can be rewritten as 312u3+20u2\frac{3}{12u^3 + 20u^2} * 13\frac{1}{3}.
  2. Multiply Fractions: Simplify the expression by multiplying the fractions.\newlineNow, multiply the numerators and the denominators:\newline312u3+20u2×13=3×1(12u3+20u2)×3\frac{3}{12u^3 + 20u^2} \times \frac{1}{3} = \frac{3 \times 1}{(12u^3 + 20u^2)\times 3}.
  3. Simplify Multiplication: Simplify the multiplication.\newlineSince 3×1=33\times 1 = 3 and (12u3+20u2)×3=36u3+60u2(12u^3 + 20u^2)\times 3 = 36u^3 + 60u^2, the expression simplifies to:\newline336u3+60u2\frac{3}{36u^3 + 60u^2}.
  4. Factor Out GCF: Factor out the greatest common factor (GCF) from the denominator.\newlineThe GCF of 36u336u^3 and 60u260u^2 is 12u212u^2. Factoring out 12u212u^2 from the denominator gives us:\newline36u3+60u2=12u2(3u+5)36u^3 + 60u^2 = 12u^2(3u + 5).
  5. Rewrite with Factored Denominator: Rewrite the expression with the factored denominator.\newlineThe expression now becomes:\newline312u2(3u+5)\frac{3}{12u^2(3u + 5)}.
  6. Cancel Common Factors: Simplify the fraction by canceling out common factors.\newlineWe can cancel out a 33 from the numerator and the 12u212u^2 in the denominator:\newline312u2(3u+5)=14u2(3u+5)\frac{3}{12u^2(3u + 5)} = \frac{1}{4u^2(3u + 5)}.

More problems from Multiply and divide rational expressions