Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide. Write your answer in simplest form. \newline2k5k+4÷(2k5)\frac{2k - 5}{k + 4} \div (2k - 5)

Full solution

Q. Divide. Write your answer in simplest form. \newline2k5k+4÷(2k5)\frac{2k - 5}{k + 4} \div (2k - 5)
  1. Rewrite Division: Rewrite the division as multiplication by the reciprocal.\newlineThe division of two fractions can be rewritten as the multiplication of the first fraction by the reciprocal of the second fraction.\newline(2k5)/(k+4)÷(2k5)(2k - 5)/(k + 4) \div (2k - 5) can be rewritten as (2k5)/(k+4)×1/(2k5)(2k - 5)/(k + 4) \times 1/(2k - 5).
  2. Multiply Numerators: Multiply the numerators and the denominators.\newlineWhen multiplying fractions, we multiply the numerators together and the denominators together.\newline(2k5)/(k+4)×1/(2k5)=(2k5)×1/((k+4)×(2k5))(2k - 5)/(k + 4) \times 1/(2k - 5) = (2k - 5) \times 1 / ((k + 4) \times (2k - 5)).
  3. Simplify Expression: Simplify the expression.\newlineWe can cancel out the common factor (2k5)(2k - 5) in the numerator and the denominator.\newline(2k5)×1/((k+4)×(2k5))=1/(k+4)(2k - 5) \times 1 / ((k + 4) \times (2k - 5)) = 1 / (k + 4).

More problems from Multiply and divide rational expressions