Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide (using Complex Fractions) -\newline(56x+3)(16y)\frac{\left(\frac{5}{6}x+3\right)}{\left(\frac{1}{6}-y\right)}/3x4y\frac{3x}{4y}\newline

Full solution

Q. Divide (using Complex Fractions) -\newline(56x+3)(16y)\frac{\left(\frac{5}{6}x+3\right)}{\left(\frac{1}{6}-y\right)}/3x4y\frac{3x}{4y}\newline
  1. Simplify Numerator and Denominator: Step 11: Simplify the numerator and denominator separately.\newlineNumerator: (56)x+3(\frac{5}{6})x + 3\newlineDenominator: (16)y(\frac{1}{6}) - y
  2. Combine into Single Fraction: Step 22: Combine the numerator and denominator into a single fraction.\newlineNumerator: (56)x+3(\frac{5}{6})x + 3\newlineDenominator: (16)y(\frac{1}{6}) - y\newlineFraction: (56)x+3(16)y\frac{(\frac{5}{6})x + 3}{(\frac{1}{6}) - y}
  3. Multiply by Reciprocal: Step 33: Multiply by the reciprocal of the denominator of the main fraction.\newlineReciprocal of (3x4y)\left(\frac{3x}{4y}\right) is (4y3x)\left(\frac{4y}{3x}\right)\newlineNew Fraction: [(56x+3)/(16y)](4y3x)\left[\left(\frac{5}{6}x + 3\right) / \left(\frac{1}{6} - y\right)\right] * \left(\frac{4y}{3x}\right)
  4. Simplify Expression: Step 44: Simplify the expression by multiplying the numerators and denominators.\newlineNumerator: (56)x+3(\frac{5}{6})x + 3\newlineDenominator: (16)y(\frac{1}{6}) - y\newlineMultiply: [(56)x+3]×(4y)/[(16)y]×(3x)\left[\left(\frac{5}{6}\right)x + 3\right] \times (4y) / \left[\left(\frac{1}{6}\right) - y\right] \times (3x)\newline= 20yx18+12y3x/3x183xy6\frac{20yx}{18} + \frac{12y}{3x} / \frac{3x}{18} - \frac{3xy}{6}\newline= 20yx+36yx3xy\frac{20yx + 36y}{x - 3xy}

More problems from Multiplication with rational exponents