Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Differentiate ((x24π2+9ex)nln(x1))\left(\frac{(x^2-4\pi^2+9e^x)^n}{\ln(x-1)}\right)

Full solution

Q. Differentiate ((x24π2+9ex)nln(x1))\left(\frac{(x^2-4\pi^2+9e^x)^n}{\ln(x-1)}\right)
  1. Apply Quotient Rule: Step Title: Apply the Quotient Rule\newlineConcise Step Description: Since we have a function of the form f(x)/g(x)f(x)/g(x), we will apply the quotient rule for differentiation, which states that the derivative of f(x)/g(x)f(x)/g(x) is (g(x)f(x)f(x)g(x))/(g(x))2(g(x)f'(x) - f(x)g'(x)) / (g(x))^2.\newlineStep Calculation: Let u=(x24π2+9ex)nu = (x^2-4\pi^2+9e^x)^n and v=ln(x1)v = \ln(x-1). We need to find uu' and vv'.\newlineStep Output: Need to find uu' and vv'.
  2. Differentiate Numerator: Step Title: Differentiate the Numerator\newlineConcise Step Description: Differentiate u=(x24π2+9ex)nu = (x^2-4\pi^2+9e^x)^n with respect to xx using the chain rule.\newlineStep Calculation: u=n(x24π2+9ex)n1(2x+9ex)u' = n(x^2-4\pi^2+9e^x)^{n-1} \cdot (2x + 9e^x)\newlineStep Output: u=n(x24π2+9ex)n1(2x+9ex)u' = n(x^2-4\pi^2+9e^x)^{n-1} \cdot (2x + 9e^x)
  3. Differentiate Denominator: Step Title: Differentiate the Denominator\newlineConcise Step Description: Differentiate v=ln(x1)v = \ln(x-1) with respect to xx.\newlineStep Calculation: v=1(x1)v' = \frac{1}{(x-1)}\newlineStep Output: v=1(x1)v' = \frac{1}{(x-1)}
  4. Apply Quotient Rule: Step Title: Apply the Quotient Rule\newlineConcise Step Description: Substitute uu, uu', vv, and vv' into the quotient rule formula to find the derivative of the original function.\newlineStep Calculation: The derivative is (ln(x1)n(x24π2+9ex)(n1)(2x+9ex)(x24π2+9ex)n1(x1))/(ln(x1))2(\ln(x-1) * n(x^2-4\pi^2+9e^x)^{(n-1)} * (2x + 9e^x) - (x^2-4\pi^2+9e^x)^n * \frac{1}{(x-1)}) / (\ln(x-1))^2\newlineStep Output: The derivative is (ln(x1)n(x24π2+9ex)(n1)(2x+9ex)(x24π2+9ex)n1(x1))/(ln(x1))2(\ln(x-1) * n(x^2-4\pi^2+9e^x)^{(n-1)} * (2x + 9e^x) - (x^2-4\pi^2+9e^x)^n * \frac{1}{(x-1)}) / (\ln(x-1))^2