Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the 
x-intercepts of the following equation.

(x+2)(-x-3)=y

(-2,0) and 
(-3,0)

(-2,0) and 
(3,0)

(0,-2) and 
(0,-3)

(0,-6)

(0,6)

(-6,0)

Determine the x x -intercepts of the following equation.\newline(x+2)(x3)=y (x+2)(-x-3)=y \newline(2,0) (-2,0) and (3,0) (-3,0) \newline(2,0) (-2,0) and (3,0) (3,0) \newline(0,2) (0,-2) and (0,3) (0,-3) \newline(0,6) (0,-6) \newline(0,6) (0,6) \newline(6,0) (-6,0)

Full solution

Q. Determine the x x -intercepts of the following equation.\newline(x+2)(x3)=y (x+2)(-x-3)=y \newline(2,0) (-2,0) and (3,0) (-3,0) \newline(2,0) (-2,0) and (3,0) (3,0) \newline(0,2) (0,-2) and (0,3) (0,-3) \newline(0,6) (0,-6) \newline(0,6) (0,6) \newline(6,0) (-6,0)
  1. Identify x-intercepts: Identify the x-intercepts from the equation.\newlineThe x-intercepts occur where y=0y = 0. So we set the equation equal to zero and solve for xx.\newline(x+2)(x3)=0(x+2)(-x-3) = 0
  2. Solve first factor: Solve the first factor for xx.\newlineSet the first factor equal to zero and solve for xx.\newlinex+2=0x + 2 = 0\newlinex=2x = -2
  3. Solve second factor: Solve the second factor for xx.\newlineSet the second factor equal to zero and solve for xx.\newlinex3=0-x - 3 = 0\newlinex=3-x = 3\newlinex=3x = -3
  4. Combine solutions: Combine the solutions to identify the xx-intercepts. The solutions from the two factors give us the xx-intercepts of the equation. The xx-intercepts are (2,0)(-2, 0) and (3,0)(-3, 0).

More problems from Write a quadratic function from its x-intercepts and another point