Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the 
x-intercepts of the following equation.

(x+1)(x-3)=y

(0,-1) and 
(0,3)

(-3,0)

(0,3)

(0,-3)

(-1,0) and 
(3,0)

(-1,0) and 
(-3,0)

Determine the x x -intercepts of the following equation.\newline(x+1)(x3)=y (x+1)(x-3)=y \newline(0,1) (0,-1) and (0,3) (0,3) \newline(3,0) (-3,0) \newline(0,3) (0,3) \newline(0,3) (0,-3) \newline(1,0) (-1,0) and (3,0) (3,0) \newline(1,0) (-1,0) and (3,0) (-3,0)

Full solution

Q. Determine the x x -intercepts of the following equation.\newline(x+1)(x3)=y (x+1)(x-3)=y \newline(0,1) (0,-1) and (0,3) (0,3) \newline(3,0) (-3,0) \newline(0,3) (0,3) \newline(0,3) (0,-3) \newline(1,0) (-1,0) and (3,0) (3,0) \newline(1,0) (-1,0) and (3,0) (-3,0)
  1. Identify x-intercepts: Identify the x-intercepts. The x-intercepts occur where the graph of the equation crosses the x-axis, which is where y=0y = 0. So, we set yy to 00 and solve for xx in the equation (x+1)(x3)=y(x+1)(x-3) = y. 0=(x+1)(x3)0 = (x+1)(x-3)
  2. Solve for x: Solve the equation for x.\newlineWe have 0=(x+1)(x3)0 = (x+1)(x-3).\newlineTo find the x-intercepts, we set each factor equal to zero and solve for x.\newlinex+1=0x + 1 = 0 or x3=0x - 3 = 0
  3. Find first x-intercept: Find the first x-intercept.\newlineSolving x+1=0x + 1 = 0 gives us x=1x = -1.\newlineSo, one x-intercept is (1,0)(-1, 0).
  4. Find second x-intercept: Find the second x-intercept.\newlineSolving x3=0x - 3 = 0 gives us x=3x = 3.\newlineSo, the second x-intercept is (3,0)(3, 0).

More problems from Write a quadratic function from its x-intercepts and another point