Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(sqrt(64x^(8)-23x^(6)))/(5x^(2)+8x^(4)+10)
Answer:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx64x823x65x2+8x4+10 \lim _{x \rightarrow \infty} \frac{\sqrt{64 x^{8}-23 x^{6}}}{5 x^{2}+8 x^{4}+10} \newlineAnswer:

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx64x823x65x2+8x4+10 \lim _{x \rightarrow \infty} \frac{\sqrt{64 x^{8}-23 x^{6}}}{5 x^{2}+8 x^{4}+10} \newlineAnswer:
  1. Factor out x8x^8: We are given the limit:\newlinelimx(64x823x65x2+8x4+10)\lim_{x \to \infty}\left(\frac{\sqrt{64x^{8}-23x^{6}}}{5x^{2}+8x^{4}+10}\right)\newlineTo simplify this limit, we will first factor out the highest power of xx in the numerator and denominator.
  2. Factor out x4x^4: In the numerator, the highest power of xx inside the square root is x8x^8. We factor out x8x^8 from the square root, which is equivalent to x4x^4 outside the square root.\newline64x823x6=x8(6423/x2)=x46423/x2\sqrt{64x^{8}-23x^{6}} = \sqrt{x^{8}(64-23/x^{2})} = x^4 \cdot \sqrt{64-23/x^{2}}
  3. Rewrite with factored terms: In the denominator, the highest power of xx is x4x^4. We factor out x4x^4 from each term.5x2+8x4+10=x4(5x2+8+10x4)5x^{2}+8x^{4}+10 = x^4\left(\frac{5}{x^{2}}+8+\frac{10}{x^{4}}\right)
  4. Cancel out x4x^4 terms: Now we rewrite the limit with the factored terms: limx(x46423x2x4(5x2+8+10x4))\lim_{x \to \infty}\left(\frac{x^4 \sqrt{64-\frac{23}{x^{2}}}}{x^4\left(\frac{5}{x^{2}}+8+\frac{10}{x^{4}}\right)}\right)
  5. Remove terms with xx: We can now cancel out the x4x^4 terms in the numerator and denominator: limx(6423x25x2+8+10x4)\lim_{x \to \infty}\left(\frac{\sqrt{64-\frac{23}{x^{2}}}}{\frac{5}{x^{2}}+8+\frac{10}{x^{4}}}\right)
  6. Simplify square root: As xx approaches infinity, the terms with xx in the denominator approach zero. Therefore, we can simplify the limit further by removing those terms:\newlinelimx(64)/(8)\lim_{x \to \infty}(\sqrt{64})/(8)
  7. Division of constants: The square root of 6464 is 88, so the limit simplifies to:\newlinelimx(88)\lim_{x \to \infty}(\frac{8}{8})
  8. Division of constants: The square root of 6464 is 88, so the limit simplifies to:\newlinelimx88\lim_{x \to \infty}\frac{8}{8}The limit of a constant over a constant is just the division of those constants:\newlinelimx88=1\lim_{x \to \infty}\frac{8}{8} = 1

More problems from Power rule