Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(root(3)(-6x^(2)-27x^(6)))/(1+9x^(2))
Answer:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx6x227x631+9x2 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{-6 x^{2}-27 x^{6}}}{1+9 x^{2}} \newlineAnswer:

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx6x227x631+9x2 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{-6 x^{2}-27 x^{6}}}{1+9 x^{2}} \newlineAnswer:
  1. Identify highest power: We are given the limit to evaluate: \newlinelimx(6x227x631+9x2)\lim_{x \to \infty}\left(\frac{\sqrt[3]{-6x^{2}-27x^{6}}}{1+9x^{2}}\right)\newlineFirst, we need to identify the highest power of xx in the numerator and the denominator to simplify the expression.
  2. Factor out x6x^6 and x2x^2: The highest power of xx in the numerator inside the cube root is x6x^6, and in the denominator, it is x2x^2. To simplify, we will factor out x6x^6 from the cube root in the numerator and x2x^2 from the denominator.
  3. Rewrite the limit: Factoring out x6x^6 from the cube root in the numerator gives us:\newlinex6(6x427)3\sqrt[3]{x^6(-\frac{6}{x^4}-27)}\newlineAnd factoring out x2x^2 from the denominator gives us:\newlinex2(1+9)x^2(1+9)
  4. Simplify cube root: Now we rewrite the limit as: limx(x6(6x427)3x2(1+9))\lim_{x \to \infty}\left(\frac{\sqrt[3]{x^6(-\frac{6}{x^4}-27)}}{x^2(1+9)}\right)
  5. Cancel out x2x^2 terms: We can simplify the cube root of x6x^6 as x2x^2 because (x2)3=x6(x^2)^3 = x^6. The limit now becomes:\newlinelimx(x26x4273)/(x2(1+9))\lim_{x \to \infty}(x^2\sqrt[3]{-\frac{6}{x^4}-27})/(x^2(1+9))
  6. Simplify expression: We can cancel out the x2x^2 terms in the numerator and the denominator:\newlinelimx(6x4273)/(1+9)\lim_{x \to \infty}\left(\sqrt[3]{\frac{-6}{x^4}-27}\right)/(1+9)
  7. Simplify cube root: As xx approaches infinity, the term 6x4-\frac{6}{x^4} approaches 00. So we can simplify the expression inside the cube root to just 27-27:limx(2731+9)\lim_{x \to \infty}\left(\frac{\sqrt[3]{-27}}{1+9}\right)
  8. Final simplification: The cube root of 27-27 is 3-3, and 1+91+9 is 1010. So the limit simplifies to:\newlinelimx(310)\lim_{x \to \infty}\left(\frac{-3}{10}\right)
  9. Evaluate the limit: Since 310-\frac{3}{10} is a constant, the limit as xx approaches infinity is simply:\newline310-\frac{3}{10}

More problems from Power rule