Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(root(3)(-41x^(5)+x^(6)))/(5x+5x^(2))
Answer:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx41x5+x635x+5x2 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{-41 x^{5}+x^{6}}}{5 x+5 x^{2}} \newlineAnswer:

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx41x5+x635x+5x2 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{-41 x^{5}+x^{6}}}{5 x+5 x^{2}} \newlineAnswer:
  1. Factor out highest power: We are given the limit: \newlinelimx(41x5+x635x+5x2)\lim_{x \to \infty}\left(\frac{\sqrt[3]{-41x^{5}+x^{6}}}{5x+5x^{2}}\right)\newlineFirst, we will factor out the highest power of xx in the numerator and denominator to simplify the expression.
  2. Factor out x6x^{6}: In the numerator, the highest power of xx is x6x^{6}, so we factor x6x^{6} out of the cube root.\newline41x5+x63=x6(41/x+1)3\sqrt[3]{-41x^{5}+x^{6}} = \sqrt[3]{x^{6}(-41/x+1)}
  3. Factor out x2x^{2}: In the denominator, the highest power of xx is x2x^{2}, so we factor x2x^{2} out.\newline5x+5x2=5x(1+x)5x+5x^{2} = 5x(1+x)
  4. Rewrite with factored terms: Now we rewrite the limit with the factored terms: \lim_{x \to \infty}\left(\sqrt[\(3]{x^{66}(-\frac{4141}{x}+11)}\right)/\left(55x(11+x)\right)
  5. Simplify cube root: We can simplify the cube root of x6x^{6} to x2x^{2} because (x6)1/3=x61/3=x2(x^{6})^{1/3} = x^{6*1/3} = x^{2}. \newlinelimx(x241x+135x(1+x))\lim_{x \to \infty}\left(\frac{x^{2} \cdot \sqrt[3]{-\frac{41}{x}+1}}{5x(1+x)}\right)
  6. Divide by x2x^{2}: Now we divide every term by x2x^{2} to simplify the limit further.limx(41x+135x+5)\lim_{x \to \infty}\left(\frac{\sqrt[3]{-\frac{41}{x}+1}}{\frac{5}{x}+5}\right)
  7. Evaluate the limit: As xx approaches infinity, 41x-\frac{41}{x} approaches 00 and 5x\frac{5}{x} approaches 00.limx(0+130+5)\lim_{x \to \infty}\left(\frac{\sqrt[3]{0+1}}{0+5}\right)
  8. Evaluate the limit: As xx approaches infinity, 41x-\frac{41}{x} approaches 00 and 5x\frac{5}{x} approaches 00.
    limx(0+13)/(0+5)\lim_{x \to \infty}(\sqrt[3]{0+1})/(0+5)Now we can evaluate the limit:
    limx(13)/5=15\lim_{x \to \infty}(\sqrt[3]{1})/5 = \frac{1}{5}

More problems from Power rule