Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(root(3)(64x^(10)+2x^(6)+41x^(4)))/(3x^(4)+3x^(3)+8x^(2))
Answer:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx64x10+2x6+41x433x4+3x3+8x2 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{64 x^{10}+2 x^{6}+41 x^{4}}}{3 x^{4}+3 x^{3}+8 x^{2}} \newlineAnswer:

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx64x10+2x6+41x433x4+3x3+8x2 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{64 x^{10}+2 x^{6}+41 x^{4}}}{3 x^{4}+3 x^{3}+8 x^{2}} \newlineAnswer:
  1. Divide by x4x^4: We are given the limit: limx(64x10+2x6+41x433x4+3x3+8x2)\lim_{x \to \infty}\left(\frac{\sqrt[3]{64x^{10}+2x^{6}+41x^{4}}}{3x^{4}+3x^{3}+8x^{2}}\right) To simplify this limit, we will first divide the numerator and the denominator by the highest power of xx in the denominator, which is x4x^4.
  2. Simplify terms: Divide each term in the numerator and the denominator by x4x^4:limx(64x10x4+2x6x4+41x4x433x4x4+3x3x4+8x2x4)\lim_{x \to \infty}\left(\frac{\sqrt[3]{\frac{64x^{10}}{x^4} + \frac{2x^{6}}{x^4} + \frac{41x^{4}}{x^4}}}{\frac{3x^{4}}{x^4} + \frac{3x^{3}}{x^4} + \frac{8x^{2}}{x^4}}\right)
  3. Ignore smaller terms: Simplify each term: limx(64x6+2x2+4133+3x+8x2)\lim_{x \to \infty}\left(\frac{\sqrt[3]{64x^{6} + 2x^{2} + 41}}{3 + \frac{3}{x} + \frac{8}{x^2}}\right)
  4. Take cube root: As xx approaches infinity, the terms 2x2x4\frac{2x^{2}}{x^4}, 41x4\frac{41}{x^4}, 3x\frac{3}{x}, and 8x2\frac{8}{x^2} will approach zero. Therefore, we can ignore these terms for the limit calculation:\newlinelimx(64x633)\lim_{x \to \infty}\left(\frac{\sqrt[3]{64x^{6}}}{3}\right)
  5. Calculate limit: Now, take the cube root of 64x664x^{6}:\newlinelimx(4x23)\lim_{x \to \infty}\left(\frac{4x^{2}}{3}\right)
  6. Limit does not exist: Since x2x^{2} grows without bound as xx approaches infinity, the limit of rac{4x^{2}}{3} as xx approaches infinity is also infinity. Therefore, the limit does not exist (DNE).

More problems from Power rule